Structural and Optical Characterization of As-grown and Annealed ZnxCd1-xS Thin-films by CBD for Solar Cell Applications

E.M.K. Ikball Ahamed, N.K. Das, A.K.S. Gupta, M.N.I. Khan, M.A. Matin, N. Amin

Abstract


We report the synthesis of ZnxCd1-xS (x=0 to 0.41) thin-films on soda-lime glass substrates by chemical bath deposition technique and the as-grown Zn31Cd0.59S films are annealed at 200oC, 350oC, and 500oC in the N2 ambient for 20 minutes. The structural properties, optical properties, surface morphology and elemental composition of the films are characterized by XRD, UV-Vis N.I.R. spectroscopy, EDX., and FESEM. The thickness of the as-grown films is measured by the DEKTAK stylus profilometer and is in the range of â“100 nm-120 nm. The as-grown films show quasi-crystalline nature with preferential orientation along (002) hexagonal plane and the crystallinity is declined with the increment of zinc content. Also, the FESEM micrographs show the homogeneous growth, pinhole-free surface, and compactness of the films. The transmission edge is shifted towards the short wavelength region as the relative zinc content in the as-grown films increases, which confirms the significant reduction of photon absorption in the blue region of the solar spectrum. The as-grown films show average transmittance of â“80-90% along with a tunable bandgap of 2.50eV to 3.35eV for the variation of relative zinc content from 0 to 0.41. The annealing treatment improves the crystalline properties of Zn31Cd0.69S film and the best crystallinity is obtained at 350oC temperature. Meanwhile, the annealed Zn31Cd0.69S films also exhibit a variable bandgap of 2.85eV, 3.10eV and, 3.22eV at 200oC, 350oC, and 500oC respectively whereas the bandgap of the as-grown film is 3.12eV. Annealed Zn31Cd0.69S thin-film at 350oC having enhanced structural properties without affecting optical characteristics and therefore it can be suitable as a good alternative buffer layer for thin-film solar cell applications.


Keywords


Thin-film; Chemical bath deposition; ZnxCd1-xS; Annealing; XRD; UV-Vis NIR; FESEM

Full Text:

PDF

References


S. Chavhan and R. P. Sharma, “Growth, structural and optical transport properties of nanocrystal Zn1-xCdxS thin films deposited by solution growth technique (SGT) for photosensor applications,†J. Phys. Chem. Solids, vol. 66, no. 10, pp. 1721–1726, 2005. (Article)

M.S. Hossain, M.A. Islam, M.M. Aliyu, P. Chelvanathan, T. Razykov,

K. Sopian, N. Amin, “Effect of annealing on the properties of ZnxCd1-xS thin film growth by RF magnetron co-sputtering,†Energy Procedia, vol. 33, pp. 214–222, 2013. (Article)

N.K. Das, J. Chakrabartty, S.F.U. Farhad, A.K. Sen Gupta, E.M.K. Ikball Ahamed,

K.S. Rahman, A. Wafi, A.A. Alkahtani, M.A. Matin, N. Amin, “Effect of substrate temperature on the properties of RF sputtered CdS thin films for solar cell applications,†Results Phys., vol. 17, no. April, pp. 0–7, 2020. (Article)

M.M. Islam, S. Ishizuka, A. Yamada, K. Sakurai, S. Niki, T. Sakurai, K. Akimoto, “CIGS solar cell with MBE-grown ZnS buffer layer,†Sol. Energy Mater. Sol. Cells, vol. 93, no. 6–7, pp. 970–972, 2009. (Article)

T. Nakada and M. Mizutani, “18% efficiency Cd-free Cu(In,Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers,†Japanese J. Appl. Physics, Part 2 Lett., vol. 41, no. 2 B, pp. 7–10, 2002. (Article)

M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, “Cd-Free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%,†IEEE J. Photovoltaics, vol. 9, no. 6, pp. 1863–1867, 2019. (Article)

D. Bae, J. Gho, M. Shin, and S. Kwon, “Effect of zinc addition on properties of cadmium sulfide layer and performance of Cu(In,Ga)Se2 solar cell,†Thin Solid Films, vol. 535, no. 1, pp. 162–165, 2013. (Article)

W. E. Devaney, W. S. Chen, J. M. Stewart, and R. A. Mickelsen, “Structure and Properties of High Efficiency ZnO/CdZnS/CuInGaSe2 Solar Cells,†IEEE Trans. Electron Devices, vol. 37, no. 2, pp. 428–433, 1990. (Article)

Andre Baran V., “Chemical bath deposited zinc cadmium sulfide and sputter deposted zinc oxide for thin film solar cell device fabrication,†University of Florida , 2009. (Reports)

Daisuke Hironiwa, Nobuki Matsuo, Noriyuki Sakai, Takuya Katou, Hiroki Sugimoto, Jakapan Chantana, Zeguo Tang and Takashi Minemoto, “Sputtered (Zn,Mg)O buffer layer for band offset control in Cu2ZnSn(S,Se)4 solar cells,†Jpn. J. Appl. Phys., vol.53, no.10, pp. 106502-1-6, 2014. (Article)

L. C. Olsen, P. Eschbach, S. Kundu, and D. J. Gaspar, “Role of buffer layers in CIS-based solar cells,†Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 652–655, 2002. (Conference paper)

R. Scheer and H.-W. Schock, Chalcogenide Photovoltaics, Wileyâ€VCH Verlag GmbH & Co. KGaA, 2011, pp. 235-273.(Book)

A. A. K. Bakly, B. F. Spencer, and P. O’Brien, “The deposition of thin films of cadmium zinc sulfide Cd1-xZnxS at 250 °C from spin-coated xanthato complexes: a potential route to window layers for photovoltaic cells,†J. Mater. Sci., vol. 53, no. 6, pp. 4360–4370, 2018. (Article)

M. K. Karanjai and D. Dasgupta, “Preparation and study of sulphide thin films deposited by the dip technique,†Thin Solid Films, vol. 155, no. 2, pp. 309–315, 1987. (Article)

M. N. Mammadov, A. Sh Aliyev, and M. Elrouby, “Electrodeposition of Cadmium Sulfide,†Int. J. Thin Film Sci. Tec, vol. 1, no. 2, pp. 43–53, 2012. (Article)

Davide Barreca, Alberto Gasparotto, Cinzia Maragno, Roberta Seraglia, Eugenio Tondello, Alfonso Venzo, Venkata Krishnan and Helmut Bertagnolli, “Cadmium O-alkylxanthates as CVD precursors of CdS: a chemical characterization,†Appl. Organomet. Chem., vol. 19, no. 1, pp. 59–67, 2005. (Article)

J. N. Alexander, S. Higashiya, D. Caskey, H. Efstathiadis, and P. Haldar, “Deposition and characterization of cadmium sulfide (CdS) by chemical bath deposition using an alternative chemistry cadmium precursor,†Sol. Energy Mater. Sol. Cells, vol. 125, pp. 47–53, 2014. (Article)

C. Tian, J. Gao, W. Li, L. Feng, J. Zhang, and L. Wu, “Cd1-xZnxS thin films with low zn content prepared by chemical bath deposition,†Int. J. Photoenergy, vol. 2012, pp. 3–8, 2012. (Article)

B. S. Tosun, C. Pettit, S. A. Campbell, and E. S. Aydil, “Structure and composition of ZnxCd1-xS films synthesized through chemical bath deposition,†ACS Appl. Mater. Interfaces, vol. 4, no. 7, pp. 3676–3684, 2012. (Article)

M. C. Baykul and N. Orhan, “Band alignment of Cd(1-x)ZnxS produced by spray pyrolysis method,†Thin Solid Films, vol. 518, no. 8, pp. 1925–1928, 2010. (Article)

J. H. Lee, W. C. Song, J. S. Yi, K. J. Yang, W. D. Han, and J. Hwang, “Growth and properties of the Cd1-xZnxS thin films for solar cell applications,†Thin Solid Films, vol. 431–432, no. 03, pp. 349–353, 2003. (Article)

Kaiwen Sun, Chang Yan, Fangyang Liu, Jialiang Huang, Fangzhou Zhou, John A. Stride, Martin Green, and Xiaojing Hao, “Over 9% Efficient Kesterite Cu2ZnSnS4 Solar Cell Fabricated by Using Zn1-xCdxS Buffer Layer,†Adv. Energy Mater., vol. 6, no. 12, pp. 4–9, 2016. (Article)

M.S. Hossain, K.S. Rahman, M.A. Islam, M. Akhtaruzzaman, H. Misran, M.A. Alghoul, N. Amin, “Growth optimization of ZnxCd1-xS films on ITO and FTO coated glass for alternative buffer application in CdTe thin film solar cells,†Opt. Mater. (Amst)., vol. 86, pp. 270–277, 2018. (Article)

K. Ramasamy, M. A. Malik, N. Revaprasadu, and P. O’Brien, “Routes to nanostructured inorganic materials with potential for solar energy applications,†Chem. Mater., vol. 25, no. 18, pp. 3551–3569, 2013. (Article)

S. D. Chavhan, S. Senthilarasu, and S. H. Lee, “Annealing effect on the structural and optical properties of a Cd1-xZnxS thin film for photovoltaic applications,†Appl. Surf. Sci., vol. 254, no. 15, pp. 4539–4545, 2008. (Article)

Y. C. A. Bakhsh, I. H. Gul, A. Maqsood, C. H. Chan, S. H. Wu, Yia Chang, “Tailoring the structural and optical properties of CdZns thin films by vacuum annealing,†Chalcogenide Lett., vol. 13, no. October, pp. 443–450, 2016. (Article)

S. Kumar, S. Rajpal, S. K. Sharma, D. Roy, and S. R. Kumar, “Effect of Zn concentration on the structural, morphological and optical properties of ternary ZnCdS nanocrystalline thin films,†Dig. J. Nanomater. Biostructures, vol. 12, no. 2, pp. 339–347, 2017. (Article)

V. Craciun, Fundamental Materials Research and Advanced Process Development for Thin-Film CIS-Based Photovoltaics, Final Technical Report, NREL, 2006. (Reports)

K. R. Miguel A.Contreras, Manuel J.Romero, Bobby To, F.Hasoon, R.Noufi, S.Ward, “Optimization of CBD CdS process in high-efficiency Cu(In,Ga)Se2 -based solar cells,†Thin Solid Films, vol. 403–404, pp. 204–211, 2002. (Article)

Kevin M. McPeak, Borirak Opasanont, Tomohiro Shibata, Dong-Kyun Ko, Matthew A. Becker, Soma Chattopadhyay, Holt P. Bui, Thomas P. Beebe, Jr., Bruce A. Bunker, Christopher B. Murray, and Jason B. Baxter, “Microreactor Chemical Bath Deposition of Laterally Graded Cd1-xZnxS Thin Films: A Route to High-Throughput Optimization for Photovoltaic Buffer Layers,†Chem. Mater., vol. 25, pp. 297–306, 2013. (Article)

M. Bär, A. Ennaoui, J. Klaer, T. Kropp, R. Sáez-Araoz, N. Allsop, I. Lauermann, H.-W. Schock, and M. C. Lux-Steiner “Formation of a ZnS/Zn(S,O) bilayer buffer on CuInS2 thin film solar cell absorbers by chemical bath deposition,†J. Appl. Phys., vol. 99, no. 12, pp. 123503-1-9, 2006. (Article)

M.S. Hossain, M.A. Islam, Q. Huda, M.M. Aliyu, T. Razykov, M.M. Alam, Z.A. AlOthman, K. Sopian, N. Amin, “Growth optimization of ZnxCd1-xS thin films by radio frequency magnetron co-sputtering for solar cell applications,†Thin Solid Films, vol. 548, pp. 202–209, 2013. (Article)

Birkholz M., Thin Film Analysis by X-Ray Scattering, Wileyâ€VCH Verlag GmbH & Co. KGaA, 2006, Ch. 1. (Book Chapter)

Robert L . Snyder, X-ray Characterization of Materials, WILEYâ€VCH Verlag GmbH, 1999 Ch. 1. (Book Chapter)

M.A. Islam, M.S. Hossain, M.M. Aliyu, P. Chelvanathan, Q. Huda, M.R. Karim, K. Sopian, N. Amin, “Comparison of structural and optical properties of CdS thin films grown by CSVT, CBD and sputtering techniques,†Energy Procedia, vol. 33, pp. 203–213, 2013. (Article)

G. K. Williamson and W. H. Hall, “X-ray line broadening from filed aluminium and wolfram,†Acta Metall., vol. 1, no. 1, pp. 22–31, 1953. (Article)

G. K. Williamson and R. E. Smallman, “Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum,†Philos. Mag., vol. 1, no. 1, pp. 34–46, 1956. (Article)

A. R. Denton and N. W. Ashcroft, “Vegards law,†Phys. Rev. A, vol. 43, no. 6, pp. 3161–3164, 1991. (Article)

U. Hotje, C. Rose, and M. Binnewies, “Lattice constants and molar volume in the system ZnS, ZnSe, CdS, CdSe,†Solid State Sci., vol. 5, no. 9, pp. 1259–1262, 2003. (Article)

J. Tauc and A. Menth, “States in the gap,†J. Non. Cryst. Solids, vol. 8–10, no. C, pp. 569–585, 1972. (Article)

B. E. McCandless, L. V. Moulton, and R. W. Birkmire, “Recrystallization and sulfur diffusion in CdCl2-treated CdTe/CdS thin films,†Prog. Photovoltaics Res. Appl., vol. 5, no. 4, pp. 249–260, 1997. (Article)

S. A. Razi, N. K. Das, S. F. U Farhad, M. A. Matin, and C. Author, “Influence of the CdCl2 Solution Concentration on the Properties of CdTe Thin Films,†International Journal of Renewable Energy Research (IJRER), vol. 10, no. 2, pp. 1012-1020, 2020. (Article)

O Zelaya-Angel, L Hernandez’, O de Melo’, J J Alvarado-Gil, R Lozada-Morales, C Falcony and H Vargas, “Band-gap shift in CdS: phase transition from cubic to hexagonal on thermal annealing,†Vacuum, vol. 46, no. 8–10, pp. 1083–1085, 1995. (Article)

E. Akbarnejad, Z. Ghorannevis, F. Abbasi, and M. Ghoranneviss, “Investigation of annealing temperature effect on magnetron sputtered cadmium sulfide thin film properties,†J. Theor. Appl. Phys., vol. 11, no. 1, pp. 45–49, 2017. (Article)

K. L. Narayanan, K. P. Vijayakumar, K. G. M. Nair, and G. V. N. Rao, “Chemical bath deposition of CdS thin films and their partial conversion to CdO on annealing,†Bull. Mater. Sci., vol. 20, no. 3, .p. 287–295, 1997. (Article)




DOI (PDF): https://doi.org/10.20508/ijrer.v10i3.11210.g8029

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4