Multi-objective Sizing of a Standalone Renewable Power System for Offshore Oil and Gas Applications

Ahmad Mohammad Saber Abdelsamie, Doaa Khalil Ibrahim, Tarek El Boghdady

Abstract


The potential of electrifying Offshore Oil and Gas platforms by Hybrid Renewable Energy Sources (HRESs) was paid attention to recently. As sensitive loads, these installations require a high level of reliability, which requires special consideration in modeling. This load sensitivity contradicts the intermittent nature of HRESs like winds and waves. Implementing batteries in a similar energy system could help decrease the variation in the generated power. However, practical batteries are known to degrade over many factors. In this article, a study is presented on quantifying the enhancement in the reliability of supply caused by coupling of a Wind-Wave (WW) hybrid offshore energy converter (named: HOEC) unit with a Lithium-Based Energy Storage System (LBESS), while considering LBESS’s degradation and load sensitivity, and optimizing the battery size and WW ratios. The optimization is solved using a semi-analytical approach and compared against two heuristic algorithms, which are particle swarm optimization and pattern search algorithm. Results demonstrate possible system reliability enhancement while optimizing the system designed using the proposed approach.

Keywords


Hybrid renewable energy systems; wind energy; wave energy; energy storage; lithium-ion battery; Offshore installations

Full Text:

PDF


DOI (PDF): https://doi.org/10.20508/ijrer.v11i4.12479.g8314

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4