Development and Experimental Investigation of Portable Solar-powered Thermoelectric Cooler for Preservation of Perishable Foods

Olipriya Biswas, Palani Kandasamy

Abstract


Preservation of perishable foods is a major issue where inconsistent electricity supply. In this study, a solar thermoelectric cooler (STEC) was fabricated by exploiting the solar energy and evaluated its cooling performance with and without product load. The STEC comprised of a thermoelectric module (TEM), inner and outer heat sink-fan fixed in the cooler box wall, and photovoltaic (PV) panel connected with the device through battery and PV charge controller. The PV power utilized to drive the device, charge the battery in the daytime, and the store electricity exploited during night time. The effect of varying input electric current on the cold side temperature of TEM, cooling capacity, power consumption and coefficient-of-performance (COP) were investigated. The results showed that the cold side temperature decreased to 5±0.2ºC in 120 and 180 min for without and with product load (0.5 kg fish fillets), respectively. The cooling capacity, power consumption and COP of the STEC were 23.8 W, 53.5 W and 0.44, respectively, at the input electric current of 3.5 A. The battery power was utilized to drive STEC for 5-6 h after sunset. The STEC could be considered as an alternate "green-option" to the domestic refrigerator where electricity is not accessible.


Keywords


Solar photovoltaic system; thermoelectric module; power consumption; cooling capacity; coefficient-of-performance

Full Text:

PDF

References


S. Jugsujinda, A. Vora-ud A, and T. Seetawan, “Analysing of thermoelectric refrigerator performance,” Procedia Eng., vol. 8, pp. 154-159, 2011, doi: 10.1016/j.proeng.2011.03.028.

D. Zhao, and G. Tan, “Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling,” Energy, vol. 68, pp. 658-666, 2014a, doi: 10.1016/j.energy.2014.01.090.

L. Qia, H. Pana, X. Zhua, X. Zhanga, W. Salmana, Z. Zhanga, L. Lia, M. Zhub, Y. Yuana, and B. Xianga, “A portable solar-powered air-cooling system based on phase-change materials for a vehicle cabin,” Energ. Convers. Manage., vol. 150, pp. 148-158, 2017, doi: 10.1016/j.enconman.2017.07.067.

M. Mirmanto, S. Syahrul, and Y. Wirdam, “Experimental performances of a thermoelectric cooler box with thermoelectric position variations,” Eng. Sci. Technol. Int. J., vol. 22, pp. 177-184, 2019, doi: 10.1016/j.jestch.2018.09.006.

M. M. Aboelmaaref, M. E, Zayed, A. H. Elsheikh, A. A. Askalany, J. Zhao, W. Li, K. Harby, S. Sadek, and M. S. Ahmed, “Design and performance analysis of a thermoelectric airconditioning system driven by solar photovoltaic panels,” Proc. IMechE Part C: J. Mech. Eng. Sci., vol. 234. no. 24, pp. 1-14, 2020, doi: 10.1177/0954406220976164.

F. Afshari, “Experimental and numerical investigation on thermoelectric coolers for comparing air to water to air to air refrigerators,” J. Therm. Anal. Calorim., vol. 144, pp. 855-868, 2021, doi: 10.1007/s10973-020-09500-6.

Y. Chen, Z. Chien, W. Lee, C. Jwo, and K. Cho, “Experimental investigation on thermoelectric chiller driven by solar cell,” Int. J. Photoenergy, article ID 102510, 2014, doi: 10.1155/2014/102510.

R. Daghigh, and Y. Khaledian, “Effective design, theoretical and experimental assessment of a solar thermoelectric cooling-heating system,” Sol. Energy., vol. 162, pp. 561-572, 2018, doi: 10.1016/j.solener.2018.01.012.

M. Zeyghami, D. Y. Goswami, and E. Stefanakos, “A review of solar thermo-mechanical refrigeration and cooling methods. Renew,” Sust. Energy Rev., vol. 51, pp. 1428-1445, 2015, doi: 10.1016/j.rser.2015.07.011.

Y. J. Dai, R. Z. Wang, and L. Ni, “Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells,” Sol. Energ. Mat. Sol. C., vol. 77, no. 4, pp. 377-391, 2003, doi: 10.1016/S0927-0248(02)00357-4.

A. H. Elsheikh, S. W. Sharshir, M. E. Mostafa, F. A. Essa, and M. K. M. Ali, “Applications of nanofluids in solar energy: a review of recent advances,” Renew. Sustain. Energy Rev., vol. 82, pp. 3483-3502, 2018, doi: 10.1016/j.rser.2017.10.108.

R. Best, and N. Ortega, “Solar refrigeration and cooling,” Renew. Energy., vol. 16, pp. 685-690, 1999. doi: 10.1016/s0960-1481(98)00252-3.

D. Zhao, and G. Tan, “A review of thermoelectric cooling: Materials, modelling and applications,” Appl. Therm. Eng., vol. 66, pp. 15-24, 2014b, doi: 10.1016/j.applthermaleng.2014.01.074.

S. B. Riffat, S. A. Omer, and X. Ma, “A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation,” Renew. Energy., vol. 23, pp. 313-323, 2001, doi: 10.1016/S0960-1481(00)00170-1.

G. Min, and D. M. Rowe, “Experimental evaluation of prototype thermoelectric domestic-refrigerators,” Appl. Energy., vol. 83, pp. 133-152, 2006, doi: 10.1016/j.apenergy.2005.01.002.

S. A. Abdul-Wahab, A. Elkamel, A. M. Al-Damkhi, I. A. Al-Habsi, H. S. Al-Rubai’ey, A. K. Al-Battashi, A. R. Al-Tamimi, K. H. Al-Mamari, and M. U. Chutani, “Design and experimental investigation of portable solar thermoelectric refrigerator,” Renew. Energy., vol. 34, pp. 30-34, 2009, doi: 10.1016/j.renene.2008.04.026.

T. C. Cheng, C. H. Cheng, Z. Z. Huang, and G. C. Liao, “Development of an energy-saving module via a combination of solar cells and thermoelectric coolers for green building applications,” Energy, vol. 36, pp. 133-140, 2011, doi: 10.1016/j.energy.2010.10.061.

W. He, J. Zhou, J. Hou, C. Chen, and J. Ji, “Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar” Appl. Energy., vol. 107, pp. 89-97, 2013, doi: 10.1016/j.apenergy.2013.01.055.

B. Ohara, R. Sitar, J. Soares, P. Novisoff, A. Nunez-Perez, and A. Lee, “Optimisation strategies for a portable thermoelectric vaccine refrigeration system in developing communities”, J. Electron. Mater., vol. 44, pp. 1614-1626, 2015, doi: /10.1007/s11664-014-3491-9.

M. Gökçek, and F. ?ahin, “Experimental performance investigation of mini channel water cooled-thermoelectric refrigerator”, Case Stud. Therm. Eng., vol. 10, pp. 54-62, 2017. doi: 10.1016/j.csite.2017.03.004.

R. M. Atta, “Solar thermoelectric cooling using closed-loop heat exchangers with macro channels,” Heat Mass Transfer., vol. 53, pp. 2241-2254, 2017, doi: 10.1007/s00231-017-1965-z

J. Batra, V. Dabra, P. Sharma, and V. Saini, “Performance evaluation of thermoelectric refrigerator based on natural and forced mode of cooling processes”, In: Saha P, et al. editors. Advances in fluid and thermal engineering, Singapore: Springer Nature, pp. 317-324, 2019, doi: 10.1007/978-981-13-6416-7_30.

P. S. Desai, Modern Refrigeration and Airconditioning for Engineers, New Delhi: Khanna Publishers, 2004.

R. Bjørk, D. V. Christensen, D. Eriksen, and N. Pryds, “Analysis of the internal heat losses in a thermoelectric generator,” Int. J. Therm. Sci., vol. 85, pp. 12-20, 2014, doi: 10.1016/j.ijthermalsci.2014.06.003.

B. Margeirsson, H. L. Lauzon, L. Porvaldsson, S. V. Árnason, S. Arason, K. L. Valtýsdóttir, and E. Martinsdóttir, “Optimised chilling protocols for fresh fish”, Matís Report, vol. 54. pp. 1-28, 2010.

S. Akdemir, “Designing of cold stores and choosing of cooling system elements”, J. Appl. Sci., vol. 8, no. 5, pp. 788-794, 2008.

S. B. Riffat, and X. Ma, “Improving the coefficient of performance of thermoelectric cooling systems: a review”, Int. J. Energy Res., vol. 28, pp. 753-768, 2004, doi: 10.1002/er.991.

G. J. Snyder, and A. H. Snyder, “Figure of merit Z T of a thermoelectric device defined from materials properties”, Energy Environ. Sci., vol. 10, no. 11, pp. 2280-2283, 2017, doi: 10.1039/C7EE02007D.

M. Chen, and G. J. Snyder, “Analytical and numerical parameter extraction for compact modelling of thermoelectric coolers”, Int. J. Heat Mass. Trans., vol. 60, pp. 689-699, 2013, doi: 10.1016/j.ijheatmasstransfer.2013.01.020.

O. Francis, C. J. Lekwuwa, and I. H, “Performance evaluation of a thermoelectric refrigerator”, Int. J. Eng. Innov. Technol., vol. 2, no. 7, pp. 18-24, 2013.

M. EL-Shimmy, Economics of Variable Renewable Sources for Electric Power Production, Germany: Lambert Academic Publishing/Omniscriptum Gmbh & Company Kg, 2017, ch. 3. Operational characteristics of renewable sources, challenges, and future prospective.

G. M. Masters, Renewable and Efficient Electric Power Systems, New Jersey: John Wiley & Sons, 2004.

National Renewable Energy Laboratory, New Delhi. Green project support: solar irradiation-West Bengal, http://greenprojectsupport.blogspot.in/p/solar-irradiation-table.html [14 March 2019].




DOI (PDF): https://doi.org/10.20508/ijrer.v11i3.12162.g8263

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4