Graphical abstract

Use of Wild Plant Species: A Potential for Methane Production in Biogas Plants

Igor Hunady, Vladena Ondrísková, Helena Hutyrová, Zuzana Kubíková, Tereza Hammerschmiedt, Jirí Mezera

Abstract


Sources of the input biomass for biogas plant (BGP) are very often communal biological wastes, farm materials such as slurry, dung or biomass of purposefully grown plants. Efforts aiming to support biogas yield from grass biomass with using additionally sown wild species can affect efficiency of the whole production process and improve its environmental impact. This was why 14 wild plant species were selected as a potential source of biomass for BGP: Trifolium alpestre L.; Trifolium rubens L.; Galega orientalis Lamb.; Medicago sativa L.; Onobrychis viciifolia Scop.; Vicia sylvatica L.; Astragalus cicer L.; Trifolium pannonicum Jacq.; Lathyrus pratensis L.; Melilotus alba Medic.; Trigonella foenum-graecum L.; Lathyrus sylverstris L.; Securigera varia L. and Dorycnium germanicum (Gremli) Rikli. The potential of individual crops for being used in BGP was evaluated based on calculating a theoretical methane yield (TMY). The calculated TMY values ranged from 0.130 m3/kgVS to 0.182 m3/kgVS. The demonstrably lowest (p<0.05) value of TMY was calculated for Medicago sativa L., which showed the lowest content of lipids and the highest content of ADF. By contrast, the highest TMY was recorded in Securigera varia L., which exhibited the highest content of carbohydrates and starch and the lowest content of ADF and NDF. An analysis of the biomass of grown species as well as the TMY calculation demonstrated significant differences between the respective plant species and a need to study in details the characteristics of wild plant species prior to their use for the production of biomass for BGP.

https://dorl.net/dor/20.1001.1.13090127.2021.11.2.40.9


Keywords


legumes; wild plant species; permanent grass stands; methane yield; biogas plant

Full Text:

PDF

References


J. Ross-Ibarra, P. L. Morrell, B. S. Gaut, “Plant domestication, a unique opportunity to identify the genetic basis of adaptation”, PNAS, Vol. 104(Supplement 1), pp. 8641–8648, 2007.

J. Van Heerwaarden, J. Doebley, W. H. Briggs, J. C. Glaubitz, M. M. Goodman, J. de Jesus Sanchez Gonzalez, J. Ross-Ibarra, “Genetic signals of origin, spread, and introgression in a large sample of maize landraces”, PNAS, Vol. 108, No. 3, pp 1088–1092, 2010.

M. Tester, P. Langridge, “Breeding Technologies to Increase Crop Production in a Changing World”, Science, Vol. 327, No. 5967, pp. 818–822, 2010.

L. Plošek, J. Elbl, T. Lošák, S. Kužel, A. Kintl, D. Ju?i?ka, J. Kynický, A. Martensson, M. Brtnický, “Leaching of mineral nitrogen in the soil influenced by addition of compost and N-mineral fertilizer”, Acta Agric. Scand. B Soil Plant Sci., Vol. 67, No. 7, pp. 607 – 614, 2017.

N. Maxted, S. Kell, B. Ford-Lloyd, E. Dulloo, A. Toledo, “Toward the Systematic Conservation of Global Crop Wild Relative Diversity”, Crop Science, Vol. 52, No. 2, pp. 774 - 785, 2012.

N. Maxted, B.V. Ford-Lloyd, J. G. Hawkes, Complementary conservation strategies, Chapman & Hall, London, UK.1997, ch. 12.

L. Hua, D. R. Wang, L. Tan, Y. Fu, F. Liu, L. Xiao, C. Sun, “LABA1, a Domestication Gene Associated with Long, Barbed Awns in Wild Rice”, Plant Cell, Vol. 27, No. 7, pp. 1875–1888, 2015.

N. Maxted, B. V. Ford-Lloyd, S. Jury, S. Kell, M. Scholten, “Towards a definition of a crop wild relative”, Biodivers. Conserv., Vol. 15, No. 8, pp. 2673–2685, 2006.

E. J. B. Von Wettberg, P. L. Chang, F. Ba?demir, N. Carrasquila-Garcia, L. B. Korbu, S. M. Moenga, D. R. Cook, “Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation”, Nat. Commun., Vol. 9, No. 1., 2018.

M. Cooper, D. C. Messina, D. Podlich, L. Radu Totir, A. Baumgarten, N. J. Hausmann, D. Wright, G. Graham, "Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction," Crop and Pasture Sci., Vol. 65, No. 4, pp. 311-336, 2014.

R. Hajjar, T. Hodgkin, “The use of wild relatives in crop improvement: a survey of developments over the last 20 years”, Euphytica, Vol. 156, No. 1-2, pp. 1–13, 2007.

T. Lošák, J. Hlušek, I. Lampartová, J. Elbl, G. Mühlbachová, P. ?ermák, J. Antonkiewicz, “Changes in the content of soil phosphorus after its application into chernozem and haplic luvisol and the effect on yields of barley biomass”, Acta Univ. Agric. et Silvic., Vol. 64, No. 5, pp. 1603-1608. 2016.

P. Hlavinka, M. Trnka, et al. “Modelling of yields and soil nitrogen dynamics for crop rotations by HERMES under different climate and soil conditions in the Czech Republic”, J. Agric. Sci., Vol. 152, No. 2, pp. 188 – 204, 2017.

T. Zlámalová, J. Elbl, M. Baron, H. B?liková, L. Lampir, J. Hlušek, “Using foliar applications of magnesium and potassium to improve yields and some qualitative parameters of vine grapes (Vitis vinifera L.)”, Plant Soil Environ., Vol. 61, No. 10, pp. 451-457, 2015.

J. Elbl, J. Maková, S. Javoreková, J. Medo, A. Kintl, T. Lošák, V. Lukas, “Response of microbial activities in soil to various organic and mineral amendments as an indicator of soil quality”, Agronomy, Vol. 9, No. 9, pp. 485, 2019.

S. Faroq, F. Azam, “Co-existence of salt and drought tolerance in Triticeae”, Hereditas Vol. 135, No. 2-3, pp. 205–210, 2001.

J. D. Arbelaez, L. T. Moreno, N. Singh, C. W. Tung, L. G. Maron, Y. Ospina, S. McCouch, “Development and GBS?genotyping of introgression lines (ILs) using two wild species of rice, O. meridionalis and O. rufipogon, in a common recurrent parent, O. sativa cv. Curinga”, Mol. Breeding., Vol. 35, pp. 81, 2015.

N. Honsdorf, T. J. March, B. Berger, M. Tester, K. Pillen, “High?throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines”, PLOS ONE, Vol. 9, No. 5, 2014.

J. E. Sheehy, A. Elmido, C. Centeno, P. Pablico, “Searching for new plants for climate change”, J. Agric. Met., Vol. 60, pp. 463–468, 2005.

R. Munns, R. A. James, B. Xu, A. Athman, S. J. Conn, C. Jordans, M. Gilliham, “Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene”, Nat. Biotechnol., Vol. 30, pp. 360–364, 2012.

X. P. Qi, M. W. Li, M. Xie, X. Liu, M. Ni, G. H. Shao, H. M. Lam, H. M. “Identification of a novel salt tolerance gene in wild soybean by whole?genome sequencing”, Nat. Commun., Vol, 5, No. 4340, 2014.

R. X. Guan, Y. Qu, Y. Guo, L. L. Yu, Y. Liu, J. H. Jiang, L. Qiu, L. “Salinity tolerance in soybean is modulated by natural variation in GmSALT3”, Plant J., Vol. 80, pp. 937–950, 2014.

S. Hurni, D. Scheuermann, S. G. Krattinger, B. Kessel, T. Wicker, G. Herren, B. Keller, “The maize disease resistance geneHtn1against northern corn leaf blight encodes a wall-associated receptor-like kinase”, Proc. Natl. Acad. Sci. U S A, Vol. 112, No. 28, pp. 8780–8785, 2015.

N. Menda, S. R. Strickler, J. D. Edwards, A. Bombarely, D. M. Dunham, G. B. Martin, L. A. Mueller, “Analysis of wild?species introgressions in tomato inbreds uncovers ancestral origins”, BMC Plant Biol., Vol. 14, No. 287, 2014

R. Malik, C. M. Smith, G. L. Brown-Guedira, T. L. Harvey, B. S. Gill, “Assessment of Aegilops tauschii for resistance to biotypes of wheat curl mite (Acari: Eriophyidae)”, J. Econ. Entomol., Vol. 96, pp. 1329–1333, 2003.

H. Li, R. L. Conner, Q. Chen, R. J. Graf, A. Laroche, F. Ahmad, A. D. Kuzyk, “Promising genetic resources for resistance to wheat streak mosaic virus and the wheat curl mite in wheat-Thinopyrum partial amphiploids and their derivatives”, Genet. Resour. Crop Evol., Vol. 51, No. 8, pp. 827–835, 2005.

I. Molnar, J. Vrana, A. Farkas, M. Kubakakova, A. Cseh, M. Molnar et al. “Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization”, Ann. Bot., Vol. 116, No. 2., pp. 189–200, 2015.

J. J. Pavek, D. L. Corsini, “Utilization of potato genetic resources for variety development”, Am. J. Potato Res., Vol. 78, pp. 433–441, 2001.

S. D. Tanksley, S. Grandillo, T. M. Fulton, D. Zamir, Y. Eshed, V. Petiard, T. Beck?Bunn, “Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L?pimpinellifolium”, Theor. Appl. Genet., Vol. 92, pp. 213–224, 1996.

M. I. P. Kovacs, N. K. Howes, J. M. Clarke, D. Leisle, “Quality characteristics of durum wheat lines deriving high protein from Triticum dicoccoides (6b) substitution”, J. Cereal. Sci., Vol. 27, pp. 47–51, 1998.

Y. S. Chung, J. Palta, J. Bamberg, S. Jansky, “Potential Molecular Markers Associated with Tuber Calcium Content in Wild Potato Germplasm”, Crop Sci., Vol. 56, No. 2, pp. 576, 2016.

Q. Pan, Y. S. Liu, O. Budai-Hadrian, M. Sela, L. Carmel-Goren, D. Zamir, R. Fluhr, “Comparative genetics of nucleotide binding siteleucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis”, Genetics, Vol. 155, pp. 309–322, 2000.

D. Ju?i?ka, M. Muchová, J. Elbl, V. Pecina, J. Kynický, M. Brtnický, Z. Rosická, “Construction of remains of small-scale mining activities as a possible innovative way how to prevent desertification”, IJEST, Vol. 13, No. 6, pp. 1405 – 1418, 2016.

M. D. Vaverková, J. Elbl, M. Radziemsk et al. “Environmental risk assessment and consequences of municipal solid waste disposal” Chemosphere, Vol. 208, pp. 569 – 578, 2018.

M. Milani, L. Montorsi, “Energy Recovery of the Biomass from Livestock Farms in Italy: The Case of Modena Province”, J. Sustain. Dev. Energy Water Environ. Syst., Vol. 6, No. 3, pp. 464-480, 2018.

S. O’Connor, E. Ehimen, S. C. Pillai, N. Power, G. A. Lyons, J. Bartlett, “An Investigation of the Potential Adoption of Anaerobic Digestion for Energy Production in Irish Farms”, Environments, Vol. 8, No. 2, pp. 8, 2021.

A. Kintl, J. Elbl, L. Plosek, J. Zahora, “Combined effect of intercrop cultivation and method of fertilization on mineral nitrogen leaching: Lysimetric experiment”, 21st International PhD Students Conference. MENDELNET 2014, Mendel Univ, Fac Agron, Brno, Czech Republic, pp 266-271, 19-20 November 2014.

O. Trn?ný, D. Vlk, E. Macková, M. Matoušková, J. ?epková, J. Ned?lník, J. Hofbauer, K. Vejražka, H. Jakešová, J. Jansa, L. Piálek, D. Knotová, “Allelic Variants for Candidate Nitrogen Fixation Genes Revealed by Sequencing in Red Clover (Trifolium pratense L.)”, Int. J. Mol. Sci., Vol. 20, pp. 5470, 2019.

J. McEniry, P. O’Kiely, “Anaerobic methane production from five common grassland species at sequential stages of maturity”, Bioresour. Technol., Vol. 127, pp. 143-150, 2013.

A. Kintl, J. Elbl, T. Lošák, M. D. Vaverková, J. Ned?lník, J. “Mixed intercropping of wheat and white clover to enhance the sustainability of the conventional cropping system: Effects on biomass production and leaching of mineral nitrogen”, Sustainability, Vol. 10, No. 10, pp. 3367, 2018.

M. Lesteur, V. Bellon-Maurel, C. Gonzalez, E. Latrille, J. M. Roger, G. Junqua, J. P. Steyer, “Alternative methods for determining anaerobic biodegradability: A review”, Process Biochem, Vol. 45, No. 4, pp. 431–440, 2010.

C. H. Pham, J. M. Triolo, T. T. T. Cu, L. Pedersen, S. G. Sommer, “Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure”, Asian-australas. J. Anim. Sci., Vol. 26, No. 6, pp. 864–873, 2013.

O. Suha Uslu, O. Kurt, E. Kaya, A. Kamalak, “Effect of species on chemical composition, metabolizable energy, organic matter digestibility and methane production of some legume plants grown in Turkey”, J. Appl. Anim. Res., Vol. 46, No. 1, pp. 1158-1161, 2018.

A. Slepetiene, J. Slepetys, V. Tilvikiene, K. Amaleviciute, I. Liaudanskiene, J. Ceseviciene, Z. Kadziuliene, R. Dabkevicius, Buliauskaite, “Evaluation of chemical composition and biogas production from legumes and perennial grasses in anaerobic digestion using the OxiTop system”, Fresenius Environ. Bull., Vol. 25, No. 5, pp. 1343-1348, 2016.

S. Achinas, G. J. W. Euverink, “Theoretical Analysis of Biogas Potential Prediction from Agricultural Waste”, Resour. Effic. Technol., Vol. 2, pp. 143–147, 2016.

K. Boe, D. J. Batstone, J. P. Steyer, I. Angelidaki, “State indicators for monitoring the anaerobic digestion process”, Water Res., Vol. 44, pp. 5973–5980, 2010.

R. Wahid, L. Feng, W.-F. Cong, A. J. Ward, H. B. Møller, J. Eriksen, "Anaerobic mono-digestion of lucerne, grass and forbs – Influence of species and cutting frequency", Biomass Bioenerg., Vol. 109, pp. 199-208, 2018.

M. C. Sikora, R. D. Hatfield, K. F. Kalscheur, “Fermentation and chemical composition of high-moisture lucerne leaf and stem silages harvested at different stages of development using a leaf stripper”, Grass Forage Sci., Vol. 74, pp, 254–263, 2019.

P. Weiland, “Biogas production: current state and perspectives”, Appl. Microbiol. Biotechnol., Vol. 85, pp. 849–860, 2010.

J. Elbl, P. Sláma, M. D. Vaverková, L. Plošek, D. Adamcová, P. Škarpa, J. Kynický, Z. Havlí?ek, M. Brtnický, E. Kabourková, “Jatropha seed cake and organic waste compost: The potential for improvement of soil fertility”, Ecol. Chem. Eng. S, Vol. 23, No. 1, pp. 131–141, 2016.

X.Zhao, J. Liu, J. Liu, F. Yang, W. Zhu, X. Yuan, Y. Hu, Z. Cui, X. Wang, Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass”, Bioresour. Technol., Vol. 241, pp. 349-359, 2017.

R. T. Franco, P. Buffière R. Bayard, “Ensiling for biogas production: Critical parameters. A review”, Biomass Bioenerg., Vol. 94, pp. 94-104, 2016.

J. M. Triolo, S. G. Sommer, H. B. Møller, M. R. Weisbjerg, X. Y. Jiang, “A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential”, Bioresour. Technol., Vol. 102, No. 20, pp. 9395-9402, 2011.

Y. Li, R. Zhang, X. Liu, Ch. Chen, X. Xiao, L. Feng, Y. He, G. Liu, “Evaluating Methane Production from Anaerobic Mono- and Co-digestion of Kitchen Waste, Corn Stover, and Chicken Manure”, Energy Fuels, Vol. 27, No. 4, pp. 2085–2091, 2013.

J. Loughrin, S. Antle, M. Bryant, Z. Berry, N. Lovanh, “Evaluation of Microaeration and Sound to Increase Biogas Production from Poultry Litter”, Environments, Vol. 7, No. 8, pp. 62, 2020.

E. G. Ozbayram, O. Ince, B. Ince, H. Harms, S. Kleinsteuber, “Comparison of Rumen and Manure Microbiomes and Implications for the Inoculation of Anaerobic Digesters”, Microorganisms, Vol. 6, pp. 15, 2018.

J. H. Ebner, R. A. Labatut, J. S. Lodge, A. A. Williamson, T. A. Trabold, “Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects”, Waste Manag., Vol. 52, pp. 286-294, 2016.

C. Zhang, G. Xiao, L. Pen, H. Su, T. Tan, “The anaerobic co-digestion of food waste and cattle manure”, Bioresour. Technol., Vol. 129, pp. 170-176, 2013.

X. Wang, G. Yang, Y. Feng, G. Ren, X. Han, “Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw”, Bioresour. Technol., Vol. 120, pp. 78-83. 2012.

P. W. Stinner, “The use of legumes as a biogas substrate - potentials for saving energy and reducing greenhouse gas emissions through symbiotic nitrogen fixation”, Energ. Sustain. Soc., Vol. 5, No. 4, 2015.

G. Carlsson, K. Huss-Danell, “Nitrogen fixation in perennial forage legumes in the field”, Plant Soil, Vol. 253, pp. 353–372, 2003.

G. Ferreira, A. N. Brown, Environmental Factors Affecting Corn Quality for Silage Production, London, UK: IntechOpen, 2016.

A. Kintl, J. Elbl, T. Vít?z, M. Brtnický, J. Skládanka, T. Hammerschmiedt, M. Vít?zová, “Possibilities of Using White Sweetclover Grown in Mixture with Maize for Biomethane Production”, Agronomy, Vol. 10, No. 9, pp. 1-28, 2020.

M. Hut?an, V. Špalková, I. Bodík, N. Kolesárová, M. Lazor, “Biogas production from maize grains and maize silage”, Polish J. of Environ. Stud., Vol. 19, pp. 323-329, 2010.

J. Mata-Alvarez, J. Dosta, S. Macé, S. Astals, “Codigestion of solid wastes: a review of its uses and perspectives including modeling”, Crit. Rev. Biotechnol., Vol. 31, pp. 99-111, 2011.

A. M. Adamovich, “Productivity and yield quality of fodder galega (Galega orientalis Lam.) — Grass mixed swards”, Plant Nutr., pp. 1008-1009, 2001.

Y. Wang, W. Majak, T. McAllister, “Frothy bloat in ruminants: cause, occurrence, and mitigation strategies”, Anim. Feed Sci. Technol., Vol. 172, pp. 103–114, 2012.

S. Rochfort, A. J. Parker, F. R. Dunshea, “Plant bioactives for ruminanthealth and productivity”, Rev. Phytochem., Vol. 69, pp. 299–322, 2008.

T. A. McAllister, H. D. Bae, G. A. Jones, K. J. Cheng, “Microbial attachment and feed digestion in the rumen”, J. Anim. Sci., Vol. 72, No. 11, pp. 3004–3018, 1994.

C. S. McSweeney, B. Palmer, D. M. McNeill, D. O. Krause, “Microbialinteractions with tannins: nutritional consequences for ruminants”, Anim. Feed Sci. Technol., Vol. 91, pp. 83–93, 2001.

D. Popp, S. Schrader, S. Kleinsteuber, H. Harms, H. Sträuber, “Biogas production from coumarin?rich plants—Inhibition by coumarin and recovery by adaptation of the bacterial community”, FEMS Microbiol. Ecol., Vol. 91, No. 103, 2015.

P. Kada?ková, A. Kintl, V. Koukalová, J. Ku?erová, JM. Brtnický, M. “Coumarin content in silages made of mixed cropping biomass comprising maize and white sweetclover”, 19th International Multidisciplinary Scientific GeoConference SGEM 2019; Sofia, Bulgaria, pp. 115–121, 2019.

G. Gatta, A. Gagliardi, P. Soldo, M. Monteleone, “Grasses and legumes in mixture: An energy intercropping system intended for anaerobic digestion”, Ital. J. Agron., Vol. 8, No. 1, pp. 47-57, 2013.




DOI (PDF): https://doi.org/10.20508/ijrer.v11i2.11990.g8216

Refbacks



Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4