Photovoltaic Thermal (PVT) with Advanced Tube Design and Working Fluid - A Review

Bassam Abdulsahib M., Kamaruzzaman Sopian, Adnan Bin Ibrahim

Abstract


This paper reviews the state-of-the-art cooling classification methods for photovoltaic system (PVs) modules and evaluates water or nanofluid, in details, the performance of radioactive cooling method. This review also covers the future development of absorber tubes photovoltaic thermal collector PVT. Daily heat budgets of PV modules with different absorbed tubes used in solar cells to reduce the temperature of the surface were analysed. This paper provides an overview of the various solar absorber tubes of Photovoltaic thermal (PVT) collector technologies, including their efficiencies, benefits, drawbacks, and research opportunities. The results show that the shape and diameter of the tube, the mass flow rate and the working fluid improved the total efficiency for the PV cell.

 

https://dorl.net/dor/20.1001.1.13090127.2021.11.2.11.0


Keywords


Nanofluids, Photovoltaic/thermal (PV/T), Absorber collector, Performance, Exergy, Thermal and electrical efficiency

Full Text:

PDF

References


H.G. Teo, P.S. Lee, and M.N.A. Hawlader, An active cooling system for photovoltaic modules. Applied Energy, 2012. 90(1): p. 309-315.

E. Radziemska and E. Klugmann, Thermally affected parameters of the current–voltage characteristics of silicon photocell. Energy Conversion and Management, 2002. 43

M. Wolf, Performance analyses of combined heating and photovoltaic power systems for residences?. Energy Conversion & Management, 1975. 16: p. 79-90.

A. Suzuki and S. Kitamura, combined Photovoltaic and Thermal Hybrid Collecter Japanese Journal of Applied Physics, 1980. 19: p. 79-83.

P. Gang, F. Huide, Z. Tao, and J. Jie, A numerical and experimental study on a heat pipe PV/T system. Solar Energy, 2011. 85(5): p. 911-921.

T. Bergene and O.M. Lovvik, Model calculations on a flat-plate solar heat collector with integrated solar cells. Solar Energy, 1995. 55: p. 453-462.

Q. Yu, A. Romagnoli, R. Yang, D. Xie, C. Liu, Y. Ding, and Y. Li, Numerical study on energy and exergy performances of a microencapsulated phase change material slurry based photovoltaic/thermal module. Energy Conversion and Management, 2019. 183: p. 708-720.

D.J. Yang, Z.F. Yuan, P.H. Lee, and H.M. Yin, Simulation and experimental validation of heat transfer in a novel hybrid solar panel. International Journal of Heat and Mass Transfer, 2012. 55(4): p. 1076-1082.

A. Tiwari, S. Dubey, G.S. Sandhu, M.S. Sodha, and S.I. Anwar, Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes. Applied Energy, 2009. 86(12): p. 2592-2597.

K. Thinsurat, H. Bao, Z. Ma, and A.P. Roskilly, Performance study of solar photovoltaic-thermal collector for domestic hot water use and thermochemical sorption seasonal storage. Energy Conversion and Management, 2019. 180: p. 1068-1084.

Q. Shi, J. Lv, C. Guo, and B. Zheng, Experimental and simulation analysis of a PV/T system under the pattern of natural circulation. Applied Thermal Engineering, 2017. 121.

M. Li, D. Zhong, T. Ma, A. Kazemian, and W. Gu, Photovoltaic thermal module and solar thermal collector connected in series: Energy and exergy analysis. Energy Conversion and Management, 2020. 206: p. 112479.

Y. Mochizuki and T. Yachi, Relationship between power generated and series/parallel solar panel configurations for 3D Fibonacci PV modules in 6 th International Conference On Renewable Energy Research and Applications 2017, IEEE: San Diego, CA, USA.

I.P. Koronaki, E.G. Papoutsis, and V.D. Papaefthimiou, Thermodynamic modeling and exergy analysis of a solar adsorption cooling system with cooling tower in Mediterranean conditions. Applied Thermal Engineering, 2016. 99: p. 1027-1038.

S.A. Kalogirou and Y. Tripanagnostopoulos, Hybrid PV/T solar systems for domestic hot water and electricity production. Energy Conversion, Management, 2006. 47(18-19): p. 3368-3382.

J. Ji, J.-P. Lu, T.-T. Chow, W. He, and G. Pei, A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation. Applied Energy, 2007. 84(2): p. 222-237.

S.N. Jahromi, A. Vadiee, and M. Yaghoubi, Exergy and Economic Evaluation of a Commercially Available PV/T Collector for Different Climates in Iran. Energy Procedia, 2015. 75: p. 444-456.

Adnan Ibrahim, A. Fudholi, K. Sopian, M.Y. Othman, and M.H. Ruslan, Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system. Energy Conversion and Management, 2014. 77: p. 527-534.

Y. Huo, J. Lv, X. Li, L. Fang, X. Ma, and Q. Shi, Experimental study on the tube plate PV/T system with iron filings filled. Solar Energy, 2019. 185: p. 189-198.

M.S. Hossain, A.K. Pandey, J. Selvaraj, N.A. Rahim, A. Rivai, and V.V. Tyagi, Thermal performance analysis of parallel serpentine flow based photovoltaic/thermal (PV/T) system under composite climate of Malaysia. Applied Thermal Engineering, 2019. 153: p. 861-871.

H. Fu, G. Li, and F. Li, Performance comparison of photovoltaic/thermal solar water heating systems with direct-coupled photovoltaic pump, traditional pump and natural circulation. Renewable Energy, 2019. 136: p. 463-472.

T.T. Chow, W. He, and J. Ji, Hybrid photovoltaic-thermosyphon water heating system for residential application. Solar Energy, 2006. 80(3): p. 298-306.

M. Chaabane, H. Mhiri, and P. Bournot, Performance Optimization of Water-Cooled Concentrated Photovoltaic System. Heat Transfer Engineering, 2015. 37(1): p. 76-81.

N. Aste, F. Leonforte, and C.D. Pero, Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector. Solar Energy, 2015. 112: p. 85-99.

M. Al-Hrari, ?. Ceylan, K. Nakoa, and A. Ergün, Concentrated photovoltaic and thermal system application for fresh water production. Applied Thermal Engineering, 2020. 171: p. 115054.

M. Herrando, A. Ramos, I. Zabalza, and C.N. Markides, A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors. Applied Energy, 2019. 235: p. 1583-1602.

E. Sakellariou and P. Axaopoulos, An experimentally validated, transient model for sheet and tube PVT collector. Solar Energy, 2018. 174: p. 709-718.

M.S. Thakare, G.S.K. Priya, P.C. Ghosh, and S. Bandyopadhyay, Optimization of photovoltaic–thermal (PVT) based cogeneration system through water replenishment profile. Solar Energy, 2016. 133: p. 512-523.

L.L. Sun, M. Li, Y.P. Yuan, X.L. Cao, B. Lei, and N.Y. Yu, Effect of tilt angle and connection mode of PVT modules on the energy efficiency of a hot water system for high-rise residential buildings. Renewable Energy, 2016. 93: p. 291-301.

B. Joy, J. Philip, and R. Zachariah, Investigations on serpentine tube type solar photovoltaic/thermal collector with different heat transfer fluids: Experiment and numerical analysis. Solar Energy, 2016. 140: p. 12-20.

A.N. Al-Shamani, K. Sopian, S. Mat, H.A. Hasan, A.M. Abed, and M.H. Ruslan, Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Conversion and Management, 2016. 124: p. 528-542.

H.-L. Tsai, Modeling and validation of refrigerant-based PVT-assisted heat pump water heating (PVTA–HPWH) system. Solar Energy, 2015. 122: p. 36-47.

M. Mohsenzadeh and R. Hosseini, A photovoltaic/thermal system with a combination of a booster diffuse reflector and vacuum tube for generation of electricity and hot water production. Renewable Energy, 2015. 78: p. 245-252.

A. Fudholi, K. Sopian, M.H. Yazdi, M.H. Ruslan, A. Ibrahim, and H.A. Kazem, Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management, 2014. 78: p. 641-651.

R. Santbergen, C.C.M. Rindt, H.A. Zondag, and R.J.C. van Zolingen, Detailed analysis of the energy yield of systems with covered sheet-and-tube PVT collectors. Solar Energy, 2010. 84(5): p. 867-878.

A. Ibrahim, M.Y. Othman, M.H. Ruslan, M.A. Alghoul, M. Yahya, A. Zaharim, and K. Sopian, Performance of Photovoltaic Thermal Collector (PVT) With Different Absorbers Design. WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT, 2009. 5(3).

M.F. Mohammed and N.A. Rahim, Comparative Study on Photovoltaic (PV) and Photovoltaic thermal water collector (PVTw). 2014.

A.N. Kadhim, M.H. Yazdi, A.M. Abed, M.H. Ruslan, and K. Sopian, Study on the Performance of Photovoltaic Thermal Collector (PV/T) with Rectangular Tube Absorber Design. Computer Applications in Environmental Sciences and Renewable Energy, 2014.

A. Ibrahim, M.Y. Othman, M.H. Ruslan, S. Mat, A. Zaharim, and K. Sopian, Experimental Studies on Water based Photovoltaic Thermal Collector (PVT). SELECTED TOPICS in SYSTEM SCIENCE and SIMULATION in ENGINEERING, 2013.

H.A. Zondag, D.W.D. Vries, W.G.J.V. Helden, R.J.C.v. Zolingen, and A.A.V. Steenhoven, The thermal and electrical yield of a PV-thermal collector?. Solar Energy, 2002. 72(2): p. 113–128.

H.A. Zondag, D.W.d. Vries, W.G.J.v. Helden, R.J.C.v. Zolingen, and A.A.v. Steenhoven, The yield of different combined PV-thermal collector designs. Solar Energy, 2003. 74(3): p. 253-269.

H. Huang, N. Bristow, T.W. David, J. Kettle, and G. Todeschini, A Novel Computational Model for Organic PV Cells and Modules. International Journal of Smart Grid and Clean Energy, 2020. 4(4): p. 157-163.

S. Mousavi, A. Kasaeian, M.B. Shafii, and M.H. Jahangir, Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system. Energy Conversion and Management, 2018. 163.

K. Sopian, A.H.A. Al-Waeli, and H.A. Kazem, Energy, exergy and efficiency of four photovoltaic thermal collectors with different energy storage material. Journal of Energy Storage, 2020. 29: p. 101245.

M. Babayan, A.E. Mazraeh, M. Yari, N.A. Niazi, and S.C. Saha, Hydrogen production with a photovoltaic thermal system enhanced by phase change materials, Shiraz, Iran case study. Journal of Cleaner Production, 2019. 215: p. 1262-1278.

M.S. Hossain, A.K. Pandey, J. Selvaraj, N.A. Rahim, M.M. Islam, and V.V. Tyagi, Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis. Renewable Energy, 2019. 136: p. 1320-1336.

T.M.O. Diallo, M. Yu, J. Zhou, X. Zhao, S. Shittu, G. Li, J. Ji, and D. Hardy, Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger. Energy, 2019. 167: p. 866-888.

A.H.A. Al-Waeli, M.T. Chaichan, K. Sopian, H.A. Kazem, Hameed B. Mahood, and A.A. Khadom, Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Solar Energy, 2019. 177: p. 178-191.

M. Hosseinzadeh, M. Sardarabadi, and M. Passandideh-Fard, Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. Energy, 2018. 147: p. 636-647.

M. Sardarabadi, M. Passandideh-Fard, and S.Z. Heris, Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy, 2014. 66: p. 264-272.

M. Sardarabadi, M. Passandideh-Fard, M.-J. Maghrebi, and M. Ghazikhani, Experimental study of using both ZnO/ water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Solar Energy Materials and Solar Cells, 2017. 161: p. 62-69.

M. Sardarabadi, M. Hosseinzadeh, A. Kazemian, and M. Passandideh-Fard, Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints. Energy, 2017. 138: p. 682-695.

M.O. Lari and A.Z. Sahin, Design, performance and economic analysis of a nanofluid-based photovoltaic/thermal system for residential applications. Energy Conversion and Management, 2017. 149: p. 467-484.

Y. Khanjari, F. Pourfayaz, and A.B. Kasaeian, Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Conversion and Management, 2016. 122: p. 263-278.

A.S. Hamed, M.I. Marei, and M.A. Badr, PV Innterfacing System Based on Dual Cascaded Inverter, in 6 th International Conference On Renewable Energy Research and Applications 2017, IEEE: San Diego, CA, USA.

A.H.A. Al-Waeli, K. Sopian, M.T. Chaichan, H. A.Kazem, A. Ibrahim, S. Mat, and M.H. Ruslan, Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energy Conversion and Management, 2017. 151: p. 693-708.

A.H.A. Al-Waeli, K. Sopian, H.A. Kazem, and M.T. Chaichan, Novel criteria for assessing PV/T solar energy production. Case Studies in Thermal Engineering, 2019. 16: p. 100547.

A.N. Al-Shamani, K. Sopian, S. Mat, and A.M. Abed, Performance enhancement of photovoltaic grid-connected system using PVT panels with nanofluid. Solar Energy, 2017. 150: p. 38-48.

A.H.A. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, H.A. Hasan, and A.N. Al-Shamani, An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Conversion and Management, 2017. 142: p. 547-558.

S. Senthilraja, R. Gangadevi, R. Marimuthu, and M. Baskaran, Performance evaluation of water and air based PVT solar collector for hydrogen production application. International Journal of Hydrogen Energy, 2020. 45(13): p. 7498-7507.

M.A. Obalanlege, Y. Mahmoudi, R. Douglas, E. Ebrahimnia-Bajestan, J. Davidson, and D. Bailie, Performance assessment of a hybrid photovoltaic-thermal and heat pump system for solar heating and electricity. Renewable Energy, 2020. 148: p. 558-572.

M. Eisapour, A.H. Eisapour, M.J. Hosseini, and P. Talebizadehsardari, Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid. Applied Energy, 2020. 266: p. 114849.

J.H. Lee, S.G. Hwang, and G.H. Lee, Efficiency Improvement of a Photovoltaic Thermal (PVT) System Using Nanofluids. Energies, 2019. 12(16): p. 3063.

A. Belkaid, I. Colak, and K. Kayisli, Improving PV System Performance using High Efficiency Fuzzy Logic Control, in 8th IEEE International Conference on Smart Grid. 2020, IEEE Xplore: Paris, FRANCE.

K. Tewari and R. Dev, Thermal Model and Performance Analysis of PVT Non-metallic Solar Water Heater. Journal of Energy and Environmental Sustainability,, 2019. 7.

A. Fudholi, N.F.M. Razali, M.H. Yazdi, A. Ibrahim, M.H. Ruslan, M.Y. Othman, and K. Sopian, TiO2/water-based photovoltaic thermal (PVT) collector: Novel theoretical approach. Energy, 2019. 183: p. 305-314.

M. Chandrasekar, S. Suresh, T. Senthilkumar, and M.G. karthikeyan, Passive cooling of standalone flat PV module with cotton wick structures. Energy Conversion and Management, 2013. 71: p. 43-50.

A. Fudholi, M. Zohri, G.L. Jin, A. Ibrahim, C.H. Yen, M.Y. Othman, M.H. Ruslan, and K. Sopian, Energy and exergy analyses of photovoltaic thermal collector with ?-groove. Solar Energy, 2018. 159: p. 742-750.




DOI (PDF): https://doi.org/10.20508/ijrer.v11i2.11931.g8182

Refbacks



Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4