Meteorological variability and use of solar energy in the Mantaro Valley, Peru

Ciro Espinoza, Wuilber Clemente, Carlos Martinez

Abstract


Innovation of technologies that use solar energy as a source of energy, requires the meteorological parameters of the place where they will be put into operation. Existing publications on meteorological parameters are general, presented for reporting, but not for use with a source of information to design technologies that will use the sun as an energy source. This article is intended to describe variations in meteorological parameters such as solar radiation, ambient temperature, relative humidity, and wind speed in the Mantaro Valley, to be applied in the design of technologies that use solar energy, the annual averages obtained are 394 W/m2, 14.3°C, 61% and 2.7 m/s, respectively.


Keywords


Renewable energy; solar irradiance, temperature; relative humidity; solar technology

Full Text:

PDF

References


R. L. Raddatz, “Evidence for the influence of agriculture on weather and climate through the transformation and management of vegetation: Illustrated by examples from the Canadian Prairies,†Agric. For. Meteorol., vol. 142, no. 2–4, pp. 186–202, Feb. 2007, doi: 10.1016/j.agrformet.2006.08.022.

P. M. Etwire, “The impact of climate change on farming system selection in Ghana,†Agric. Syst., vol. 179, p. 102773, Mar. 2020, doi: 10.1016/j.agsy.2019.102773.

A. Wreford and C. F. E. Topp, “Impacts of climate change on livestock and possible adaptations: A case study of the United KingdomWreford, A., & Topp, C. F. E. (2020). Impacts of climate change on livestock and possible adaptations: A case study of the United Kingdom. Agricultural Syst,†Agric. Syst., vol. 178, p. 102737, Feb. 2020, doi: 10.1016/j.agsy.2019.102737.

F. Togo, E. Watanabe, H. Park, R. J. Shephard, and Y. Aoyagi, “Meteorology and the physical activity of the elderly: the Nakanojo Study,†Int. J. Biometeorol., vol. 50, no. 2, pp. 83–89, Nov. 2005, doi: 10.1007/s00484-005-0277-z.

M. Rizwan, M. Jamil, S. Kirmani, and D. P. Kothari, “Fuzzy logic based modeling and estimation of global solar energy using meteorological parameters,†Energy, vol. 70, pp. 685–691, Jun. 2014, doi: 10.1016/j.energy.2014.04.057.

P. Ailliot, M. Boutigny, E. Koutroulis, A. Malisovas, and V. Monbet, “Stochastic weather generator for the design and reliability evaluation of desalination systems with Renewable Energy Sources,†Renew. Energy, vol. 158, pp. 541–553, Oct. 2020, doi: 10.1016/j.renene.2020.05.076.

J. Fischereit and K. H. Schlünzen, “Evaluation of thermal indices for their applicability in obstacle-resolving meteorology models,†Int. J. Biometeorol., vol. 62, no. 10, pp. 1887–1900, Oct. 2018, doi: 10.1007/s00484-018-1591-6.

Y. Xie et al., “Outdoor thermal sensation and logistic regression analysis of comfort range of meteorological parameters in Hong Kong,†Build. Environ., vol. 155, no. February, pp. 175–186, 2019, doi: 10.1016/j.buildenv.2019.03.035.

J. Cao, M. Li, M. Wang, M. Xiong, and F. Meng, “Effects of climate change on outdoor meteorological parameters for building energy-saving design in the different climate zones of China,†Energy Build., vol. 146, pp. 65–72, 2017, doi: 10.1016/j.enbuild.2017.04.045.

Y. Li, Y. Wang, and Q. Chen, “Study on the impacts of meteorological factors on distributed photovoltaic accommodation considering dynamic line parameters,†Appl. Energy, no. October, p. 114133, 2019, doi: 10.1016/J.APENERGY.2019.114133.

R. Ben Ammar, M. Ben Ammar, and A. Oualha, “Photovoltaic power forecast using empirical models and artificial intelligence approaches for water pumping systems,†Renew. Energy, vol. 153, pp. 1016–1028, Jun. 2020, doi: 10.1016/j.renene.2020.02.065.

G. Pirasteh, R. Saidur, S. M. A. Rahman, and N. A. Rahim, “A review on development of solar drying applications,†Renew. Sustain. Energy Rev., vol. 31, pp. 133–148, 2014, doi: 10.1016/j.rser.2013.11.052.

M. O. Belloulid, H. Hamdi, L. Mandi, and N. Ouazzani, “Solar drying of wastewater sludge: a case study in Marrakesh, Morocco,†Environ. Technol., vol. 40, no. 10, pp. 1316–1322, Apr. 2019, doi: 10.1080/09593330.2017.1421713.

E. F. Aghdam, C. Scheutz, and P. Kjeldsen, “Impact of meteorological parameters on extracted landfill gas composition and flow,†Waste Manag., vol. 87, pp. 905–914, 2019, doi: 10.1016/j.wasman.2018.01.045.

Ó. Garay and Ã. Ochoa, “Primera aproximación para la identificación de los diferentes tipos de suelo agrícola en el valle del río Mantaro,†Lima-Perú, 2010.

SunEarthTools, “Tools for consumers and designers of solar energy,†SunEarthTools.com, 2020. [Online]. Available: https://www.sunearthtools.com/es/index.php. [Accessed: 11-Jul-2020].

H. Rezk, I. Tyukhov, and A. Raupov, “Experimental implementation of meteorological data and photovoltaic solar radiation monitoring system,†Int. Trans. Electr. Energy Syst., vol. 25, no. 12, pp. 3573–3585, Dec. 2015, doi: 10.1002/etep.2053.

X. Berisha, A. Zeqiri, and D. Meha, “Solar Radiation–The Estimation of the Optimum Tilt Angles for South-Facing Surfaces in Pristina,†Doi.Org, no. August, pp. 1–13, 2017, doi: 10.20944/preprints201708.0010.v1.

S. Sinha and S. S. Chandel, “Analysis of fixed tilt and sun tracking photovoltaic–micro wind based hybrid power systems,†Energy Convers. Manag., vol. 115, pp. 265–275, May 2016, doi: 10.1016/j.enconman.2016.02.056.

A. Heimsath, G. Bern, D. van Rooyen, and P. Nitz, “Quantifying Optical Loss Factors of Small Linear Concentrating Collectors for Process Heat Application,†Energy Procedia, vol. 48, pp. 77–86, 2014, doi: 10.1016/j.egypro.2014.02.010.

I. Vamvakas, V. Salamalikis, and A. Kazantzidis, “Evaluation of enhancement events of global horizontal irradiance due to clouds at Patras, South-West Greece,†Renew. Energy, vol. 151, pp. 764–771, May 2020, doi: 10.1016/j.renene.2019.11.069.

J. López Lorente, X. Liu, and D. J. Morrow, “Worldwide evaluation and correction of irradiance measurements from personal weather stations under all-sky conditions,†Sol. Energy, vol. 207, pp. 925–936, Sep. 2020, doi: 10.1016/j.solener.2020.06.073.

A. Benseddik, A. Azzi, F. Chellali, R. Khanniche, and K. Allaf, “An analysis of meteorological parameters influencing solar drying systems in Algeria using the isopleth chart technique,†Renew. Energy, vol. 122, pp. 173–183, Jul. 2018, doi: 10.1016/j.renene.2018.01.111.

A. Fudholi and K. Sopian, “A review of solar air flat plate collector for drying application,†Renew. Sustain. Energy Rev., vol. 102, no. December 2017, pp. 333–345, 2019, doi: 10.1016/j.rser.2018.12.032.

A. El Khadraoui, S. Bouadila, S. Kooli, A. Farhat, and A. Guizani, “Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM,†J. Clean. Prod., vol. 148, pp. 37–48, 2017, doi: 10.1016/j.jclepro.2017.01.149.

H. Wang, J. Yan, S. Han, and Y. Liu, “Switching strategy of the low wind speed wind turbine based on real-time wind process prediction for the integration of wind power and EVs,†Renew. Energy, vol. 157, pp. 256–272, Sep. 2020, doi: 10.1016/j.renene.2020.04.132.

S. Eryilmaz and C. Kan, “Reliability based modeling and analysis for a wind power system integrated by two wind farms considering wind speed dependence,†Reliab. Eng. Syst. Saf., vol. 203, p. 107077, Nov. 2020, doi: 10.1016/j.ress.2020.107077.




DOI (PDF): https://doi.org/10.20508/ijrer.v10i3.11274.g8006

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4