Comparative CFD analysis of helical shaped earth air pipe heat exchanger using water tube as a thermal reservoir using different pipe materials

Mahendra Kumar Verma, Vikas Bansal

Abstract


Common configuration of EAPHE system usually consider single or U shaped configuration, which requires large installation area and are not suitable for installation under small home or office setup. This major drawback can be overcome by using helical shaped air pipe, which reduces installation area up to 60%. Performance of EAPHE deteriorates after long run due to thermal saturation in the soil near to pipe surface. In this paper problem of thermal saturation of soil is attempted by proposing water pipe of three different pipe materials. Water pipe act as thermal reservoir to absorb heat from surrounded soil and maintains constant heat transfer after 24 hours of long run. Thermal performance of Earth Air Pipe Heat Exchanger (EAPHE) has been investigated under four different type of model developed using helical air pipe and comparison were made in terms of temperature drop, soil temperature at 0.05m and 0.25 m from pipe, change in water temperature, COP and effectiveness of the system for the continuous 72hours of run.


Keywords


Earth air pipe heat exchanger; Energy; COP; thermal saturation; effectiveness; thermal reservoir; renewable enrgy; geothermal energy

Full Text:

PDF

References


K. K. Agrawal, M. Bhardwaj, R. Misra, G. Das Agrawal, and V. Bansal, “Optimization of operating parameters of earth air tunnel heat exchanger for space cooling: Taguchi method approach,†Geotherm. Energy, vol. 6, no. 1, pp. 1–17, 2018, doi: 10.1186/s40517-018-0097-0.

V. Bansal, R. Misra, G. Das Agrawal, and J. Mathur, “Performance evaluation and economic analysis of integrated earth-air-tunnel heat exchanger-evaporative cooling system,†Energy Build., vol. 55, pp. 102–108, 2012, doi: 10.1016/j.enbuild.2012.08.047.

N. Bordoloi, A. Sharma, H. Nautiyal, and V. Goel, “An intense review on the latest advancements of Earth Air Heat Exchangers,†Renew. Sustain. Energy Rev., vol. 89, no. June 2017, pp. 261–280, 2018, doi: 10.1016/j.rser.2018.03.056.

X. Gao, Y. Qu, and Y. Xiao, “A numerical method for cooling and dehumidifying process of air flowing through a deeply buried underground tunnel with unsaturated condensation model,†Appl. Therm. Eng., vol. 159, no. February, 2019, doi: 10.1016/j.applthermaleng.2019.113891.

S. Jakhar, R. Misra, V. Bansal, and M. S. Soni, “Thermal performance investigation of earth air tunnel heat exchanger coupled with a solar air heating duct for northwestern India,†Energy Build., vol. 87, pp. 360–369, 2015, doi: 10.1016/j.enbuild.2014.11.070.

M. Kaushal, “Geothermal cooling/heating using ground heat exchanger for various experimental and analytical studies: Comprehensive review,†Energy Build., vol. 139, pp. 634–652, 2017, doi: 10.1016/j.enbuild.2017.01.024.

K. Kumar Agrawal, T. Yadav, R. Misra, and G. Das Agrawal, “Effect of soil moisture contents on thermal performance of earth-air-pipe heat exchanger for winter heating in arid climate: In situ measurement,†Geothermics, vol. 77, no. July 2018, pp. 12–23, 2019, doi: 10.1016/j.geothermics.2018.08.004.

R. Misra et al., Field investigations to determine the thermal performance of earth air tunnel heat exchanger with dry and wet soil: Energy and exergetic analysis, vol. 171. Elsevier B.V., 2018.

A. Mukhtar, M. Z. Yusoff, and K. C. Ng, “The potential influence of building optimization and passive design strategies on natural ventilation systems in underground buildings: The state of the art,†Tunn. Undergr. Sp. Technol., vol. 92, no. July, 2019, doi: 10.1016/j.tust.2019.103065.

T. Singh, A. Kumar, and P. Baredar, “Experimental and analytical studies of earth – air heat exchanger ( EAHE ) systems in India : A review,†Renew. Sustain. Energy Rev., vol. 19, pp. 238–246, 2013, doi: 10.1016/j.rser.2012.11.023.

V. Bansal, R. Misra, G. Das, and J. Mathur, “‘ Derating Factor ’ new concept for evaluating thermal performance of earth air tunnel heat exchanger : A transient CFD analysis,†Appl. Energy, vol. 102, pp. 418–426, 2013, doi: 10.1016/j.apenergy.2012.07.027.

F. Niu, Y. Yu, D. Yu, and H. Li, “Investigation on soil thermal saturation and recovery of an earth to air heat exchanger under different operation strategies,†Appl. Therm. Eng., 2015, doi: 10.1016/j.applthermaleng.2014.11.069.

N. A. S. Elminshawy, F. R. Siddiqui, Q. U. Farooq, and M. F. Addas, “Experimental investigation on the performance of earth-air pipe heat exchanger for different soil compaction levels,†Appl. Therm. Eng., vol. 124, pp. 1319–1327, 2017, doi: 10.1016/j.applthermaleng.2017.06.119.

S. Mohammad, N. Shojaee, and K. Malek, “Earth-to-air heat exchangers cooling evaluation for different climates of Iran,†Sustain. Energy Technol. Assessments, vol. 23, no. April, pp. 111–120, 2017, doi: 10.1016/j.seta.2017.09.007.

R. Singh, R. L. Sawhney, I. J. Lazarus, and V. V. N. Kishore, “Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review,†Renew. Sustain. Energy Rev., vol. 82, no. May, pp. 2162–2185, 2018, doi: 10.1016/j.rser.2017.08.058.

K. Kumar, R. Misra, and G. Das, “To study the effect of different parameters on the thermal performance of ground-air heat exchanger system : In situ measurement,†Renew. Energy, vol. 146, pp. 2070–2083, 2020, doi: 10.1016/j.renene.2019.08.065.

A. Mathur, A. Srivastava, J. Mathur, S. Mathur, and G. D. Agrawal, “Transient effect of soil thermal diffusivity on performance of EATHE system,†Energy Reports, vol. 1, pp. 17–21, 2015, doi: 10.1016/j.egyr.2014.11.004.

A. Mathur, A. Kumar, and S. Mathur, “Numerical investigation of the performance and soil temperature recovery of an EATHE system under intermittent operations,†Renew. Energy, vol. 95, pp. 510–521, 2016, doi: 10.1016/j.renene.2016.04.037.

A. Mathur, A. Srivastava, G. D. Agrawal, S. Mathur, and J. Mathur, “CFD analysis of EATHE system under transient conditions for intermittent operation,†Energy Build., vol. 87, pp. 37–44, 2015, doi: 10.1016/j.enbuild.2014.11.022.

S. F. Ahmed, M. T. O. Amanullah, M. M. K. Khan, M. G. Rasul, and N. M. S. Hassan, “Parametric study on thermal performance of horizontal earth pipe cooling system in summer,†Energy Convers. Manag., vol. 114, pp. 324–337, 2016, doi: 10.1016/j.enconman.2016.01.061.

A. R. Kumar, “OPTIMIZATION ANALYSIS OF HEAT TRANSFER ACROSS,†Int. J. Adv. Eng. Technol., vol. 7, no. 2, pp. 871–876, 2016.

A. Beyene, V. Ramayya, and G. Shunki, “CFD Simulation of Biogas Fired Clay Brick Kiln,†Am. J. Eng. Appl. Sci., vol. 11, no. 2, pp. 1045–1061, 2018, doi: 10.3844/ajeassp.2018.1045.1061.

A. Mathur, A. Srivastava, G. D. Agrawal, and S. Mathur, “CFD analysis of EATHE system under transient conditions for intermittent operation,†Energy Build., vol. 87, pp. 37–44, 2015, doi: 10.1016/j.enbuild.2014.11.022.

A. Mathur, S. Mathur, G. D. Agrawal, and J. Mathur, “Comparative study of straight and spiral earth air tunnel heat exchanger system operated in cooling and heating modes,†Renew. Energy, vol. 108, pp. 474–487, 2017, doi: 10.1016/j.renene.2017.03.001.

V. Bansal, R. Mishra, G. Das Agarwal, and J. Mathur, “Performance analysis of integrated earth – air-tunnel-evaporative cooling system in hot and dry climate,†Energy Build., vol. 47, pp. 525–532, 2012, doi: 10.1016/j.enbuild.2011.12.024.

R. Misra, V. Bansal, G. Das Agrawal, J. Mathur, and T. K. Aseri, “CFD analysis based parametric study of derating factor for Earth Air Tunnel Heat Exchanger,†Appl. Energy, vol. 103, no. March 2013, pp. 266–277, 2012, doi: 10.1016/j.apenergy.2012.09.041.

K. K. Agrawal, R. Misra, T. Yadav, G. Das Agrawal, and D. K. Jamuwa, “Experimental study to investigate the effect of water impregnation on thermal performance of earth air tunnel heat exchanger for summer cooling in hot and arid climate,†Renew. Energy, vol. 120, pp. 255–265, 2018, doi: 10.1016/j.renene.2017.12.070.

V. Bansal, R. Misra, G. Das Agrawal, and J. Mathur, “Performance analysis of earth-pipe-air heat exchanger for summer cooling,†Energy Build., vol. 42, no. 5, pp. 645–648, 2010, doi: 10.1016/j.enbuild.2009.11.001.

W. Morshed, L. Leso, L. Conti, G. Rossi, S. Simonini, and M. Barbari, “Cooling performance of earth-to-air heat exchangers applied to a poultry barn in semi-desert areas of south Iraq,†Int. J. Agric. Biol. Eng., vol. 11, no. 3, pp. 47–53, 2018, doi: 10.25165/j.ijabe.20181103.3047.




DOI (PDF): https://doi.org/10.20508/ijrer.v10i3.11229.g8038

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4