Identification of Archimedes Screw Turbine for Efficient Conversion of Traditional Water Mills (Gharats) into Micro Hydro-power Stations in Western Himalayan Regions of India: An Experimental Analysis

Robin Thakur, Kamal Kashyap, Raj Kumar, Sunil Kumar

Abstract


The abundant sources of low headwater streams in the Western Himalayan region create huge potential in terms of micro-hydro power generation capability, and the existing Gharats (Traditional Watermills) that were used previously for grinding flour provides an already built plant for the electricity generation. The Archimedes screw turbine is being explored all around the world as one of the best candidates for efficient electricity generation at low head and low flow rate sites. But there is a lack of research in identifying the best screw configuration for achieving maximum output power and efficiency at such low head and low flow rate sites. The experimental analysis conducted here reveals that the screw angle around and below 25o along with flow rate below 1.5 L/s can increase the efficiency of the Archimedes Screw Turbine to around 90% provided the RPM is kept at the optimal level to reduce the frictional and overflow losses in the turbine. The analysis also indicates that Archimedes Screw Turbine can produce a humungous amount of power when implemented at all the 500,000 tradition water mills and can easily support the adverse power requirement of the country in a cost-effective manner.


Keywords


Archimedes Screw, Traditional watermills (Gharats), RPM, Flow rate

Full Text:

PDF

References


Siswantara, A., Warjito, Budiarso, Harmadi, R., Gumelar S., M., & Adanta, D. (2019). Investigation of the α angle’s effect on the performance of an Archimedes turbine. Energy Procedia, 156, 458-462. doi: 10.1016/j.egypro.2018.11.084

Shimomura, M., & Takano, M. (2013). Modeling and Performance Analysis of Archimedes Screw Hydro Turbine Using Moving Particle Semi-Implicit Method. Journal Of Computational Science And Technology, 7(2), 338-353. doi: 10.1299/jcst.7.338

Shimokawa, K., Furukawa, A., Okuma, K., Matsushita, D., & Watanabe, S. (2012). Experimental study on simplification of Darrieus-type hydro turbine with inlet nozzle for extra-low head hydropower utilization. Renewable Energy, 41, 376-382. doi: 10.1016/j.renene.2011.09.017

Kishor, N., Saini, R., & Singh, S. (2005). Small hydro power plant identification using NNARX structure. Neural Computing And Applications, 14(3), 212-222. doi: 10.1007/s00521-004-0456-6

Jager, M., Schwarz, M., Auer, D., Platzer, B., & Kung, J. (2017). Connecting small, private & independent hydro power plants to increase the overall power generating efficiency. Procedia Computer Science, 109, 841-848. doi: 10.1016/j.procs.2017.05.354

Kouno, H., Isohata, R., Era, S., & Matsushita, D. (2018). Study on Performance and Installation of Portable type Darrieus Hydro Turbine in Extra Low Hydropower. The Proceedings Of Conference Of Kyushu Branch, 2018.71(0), A24. doi: 10.1299/jsmekyushu.2018.71.a24

Nerlich, U. (2013). Towards Europe 2035 - In Search of the Archimedean Screw: FOCUS in Perspective. Information & Security: An International Journal, 29, 161-183. doi: 10.11610/isij.2912

Sritram, P., & Suntivarakorn, R. (2017). Comparative Study of Small Hydropower Turbine Efficiency at Low Head Water. Energy Procedia, 138, 646-650. doi: 10.1016/j.egypro.2017.10.181

Erinofiardi, Nuramal, A., Bismantolo, P., Date, A., Akbarzadeh, A., Mainil, A., & Suryono, A. (2017). Experimental Study of Screw Turbine Performance based on Different Angle of Inclination. Energy Procedia, 110, 8-13. doi: 10.1016/j.egypro.2017.03.094

Dedic-Jandrek, H., & Nizetic, S. (2019). Small scale archimedes hydro power plant test station: Design and experimental investigation. Journal Of Cleaner Production, 231, 756-771. doi: 10.1016/j.jclepro.2019.05.234

Lubitz, W., Lyons, M., & Simmons, S. (2014). Performance Model of Archimedes Screw Hydro Turbines with Variable Fill Level. Journal Of Hydraulic Engineering, 140(10), 04014050. doi: 10.1061/(asce)hy.1943-7900.0000922.

Rohmer, J., Knittel, D., Sturtzer, G., Flieller, D., & Renaud, J. (2016). Modeling and experimental results of an Archimedes screw turbine. Renewable Energy, 94, 136-146. doi: 10.1016/j.renene.2016.03.044

Yulistiyanto, B., & Hizhar, Y. (2012). Effect Of Flow Discharge And Shaft Slope Of Archimides (Screw) Turbin On The Micro-Hydro Power Plant. Dinamika TEKNIK SIPIL, 12(1). Retrieved from https://pdfs.semanticscholar.org/3a0e/e6306e42b2ce1bafd 75303e564f7ff7f7ca4.pdf

Matsushita, D., Okuma, K., Watanabe, S., & Furukawa, A. (2008). Simplified Structure of Ducted Darrieus-Type Hydro Turbine with Narrow Intake for Extra-low Head Hydropower Utilization. Journal Of Fluid Science And Technology, 3(3), 387-397. doi: 10.1299/jfst.3.387

Caldon, R., & Pasut, F. (2014). Innovative Control Strategy for Islanded Small Hydro Power Plant. Journal Of Energy And Power Engineering, 8(1). doi: 10.17265/1934-8975/2014.01.014

Date, A., & Akbarzadeh, A. (2009). Design and cost analysis of low head simple reaction hydro turbine for remote area power supply. Renewable Energy, 34(2), 409-415. doi: 10.1016/j.renene.2008.05.012

Maulana, M., Darwin, & Putra, G. (2019). Performance of Single Screw Archimedes Turbine Using Transmission. IOP Conference Series: Materials Science And Engineering, 536, 012022. doi: 10.1088/1757-899x/536/1/012022

Berlin, V., & Murav’ev, O. (2015). Governing the Turbine-Generator Unit of a Small-Scale Hydropower Plant with a Long Penstock. Power Technology And Engineering, 49(4), 240-244. doi: 10.1007/s10749-015-0608-0

Monserrat, J. (2015). Energy Saving in a Variable-Inclination Archimedes Screw. Irrigation & Drainage Systems Engineering, 04(01). doi: 10.4172/2168-9768.1000133

Becker Tischer, C., Tibola, J., Giuliani Scherer, L., & Camargo, R. (2017). Proportional-Resonant control applied on voltage regulation of standalone SEIG for micro-hydro power generation. IET Renewable Power Generation. doi: 10.1049/iet-rpg.2016.0857

Mutasim, M., Azahari, N., & Adam, A. (2013). Prediction of Particle Impact on an Archimedes Screw Runner Blade for Micro Hydro Turbine. Applied Mechanics And Materials, 465-466, 552-556. doi: 10.4028/www.scientific.net/amm.465-466.552

Michal Lisicki., William Lubitz., Graham W Taylor. Optimum design and operation of Archimedes Screw Turbine using Bayesian optimization. Applied Energy,2016; 183:1404-1417.

Zafirah Rosly., Ummu K. Jamaludin., N. Suraya Azahari., M. Ammar Nik Mu’tasim. Parametric Study On Efficiency Of Archimedes Screw Turbine. ARPN Journal of Engineering and Applied Sciences,2016; 11:18.

Julien Rohmer.,Dominique Knittel., Guy Sturtzer., Damien Flieller., Jean Renaud. Modeling and experimental results of an Archimedes screw turbine. Renewable Energy,2016; 94:136 -146.

Lee, K.T., et al., Design and 3D printing of controllable-pitch archimedean screw for pico hydropower generation. Journal of Mechanical Science and Technology, 2015. 29(11): p. 4851-4857.

Saroinsong, T., et al., Fluid Flow Phenomenon in a Three - Bladed Power - Generating Archimedes Screw Turbine. Journal of Engineering Science and Technology Review, 2016. 9(2): p. 72-77.

Shimomura, M. and M. Takano, Modeling and Performance Analysis of Archimedes Screw Hydro Turbine Using Moving Particle Semi-Implicit Method. Journal of Computational Science and Technology, 2013. 7(2): p. 338-353.

Müller, G. and J. Senior, Simplified theory of Archimedean screws. Journal of Hydraulic Research, 2010. 47(5): p. 666-669.

Fiardi E 2014 Journal of Ocean Mechanical and Aerospace Science and Engineering- 5 1-12

Yadav, R., Park, W., Singh, J., & Dubey, B. (2004). Do the western Himalayas defy global warming?. Geophysical Research Letters, 31(17), n/a-n/a. doi: 10.1029/2004gl020201

Zelenakova, M., Fijko, R., Diaconu, D., & Remenakova, I. (2018). Environmental Impact of Small Hydro Power Plant—A Case Study. Environments, 5(1), 12. doi: 10.3390/environments5010012.

R Thakur, A Kumar, R Nanda, M Sethi “Correlation Development for Erosive Wear Rate on Pelton Turbine Bucketsâ€, International Journal of Mechanical and Production Engineering Research and Development (IJMPERD). 2017; 7(3):259-274.s

R Thakur, A Kumar, M Sethi “Experimental Examined of Effect of Silt Erosion on Overall Performance of Pelton Turbine Bucketsâ€; IRACST- Engineering Science and Technology: An International Journal (ESTIJ). 2017; 7(3):2250-3498.

R Thakur, M Sethi, S Khurana“Impact of Sand Erosion in Hydro turbines: A Case Study of Hydropower Plants of Himachal Pradesh, India; Springer nature Singapore: Intelligent Communication control and Devices vol. 624, pp. 1-12, 2018.




DOI (PDF): https://doi.org/10.20508/ijrer.v10i3.11176.g8020

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4