Interior Search Optimization Algorithm for Modeling Power Curve of Wind Turbine

Ahmed Agwa

Abstract


Incorrect sensor reading, operation stoppage, and defect, produce noise in the records of wind speed and the synchronized wind turbine (WT) power. This noise still remains even after purification so fitted curve of wind turbine power model (WTPM) may differ from that in the datasheet. WTPM is vital due to its role in managing and predicting wind energy. Identification of WTPM parameters can be addressed as a nonlinear optimization issue. The objective function targets minimizing the root of the mean squared errors among the accompanying computed and measured wind power points with subjection to group of parameters constraints. In this article, a newly designed interior search optimization algorithm (ISA) is applied to identify the WTPM obscure parameters. Three parametric models namely two logistic functions and amended hyperbolic tangent are analyzed neatly. Simulations are accomplished using MATLAB. The ISA applicability is evaluated via comparing its results with the observed results of two WTs. To legalize the ISA results, they are compared with other methods results. It can be declared here that the ISA performs well and possesses a fine strength to generate WTPM parameters with lesser errors.

Keywords


Parametric model; power curve; wind turbine; optimization approaches; interior search algorithm

Full Text:

PDF

References


Mohammed I. R., Saleh A. A., Saleh A. M., “Consolidity analysis of wind turbines in wind farmsâ€, International Journal of Renewable Energy Research, Vol.10, No.1, pp. 205-216, 2020.

Bao Y., Pan D., Wang X., Liao L., Yang Q., “Least-square B-spline approximation based wind turbine power curve modelingâ€, Chinese Automation Congress (CAC), Jinan, China, DOI: 10.1109/CAC.2017.8243986, pp. 6711-6716, 20-22 October 2017.

Bao Y., Yang Q., Sun Y., “Iterative modeling of wind turbine power curve based on leastâ€square Bâ€spline approximationâ€, Asian Journal of Control, DOI: 10.1002/asjc.2150, Vol. 21, pp. 2004-2016, 2019.

Howlader A. M., Urasaki N., Uchida K., Yona A., Senjyu T., Kim C. K., Saber A. Y., “Parameter Identification of Wind Turbine for Maximum Power-point Tracking Controlâ€, Electric Power Components and Systems, DOI: 10.1080/15325000903376974, Vol. 38, Issue 5, pp. 603-614, 2010.

Goudarzi A., Davidson I. E., Ahmadi A., Venayagamoorthy G. K., “Intelligent analysis of wind turbine power curve modelsâ€, IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), Orlando, Florida, USA, DOI: 10.1109/CIASG.2014.7011548, pp. 1-7, 9-12 December 2014.

Kusiak A., Zheng H., Song Z., “Models for monitoring wind farm powerâ€, Renewable Energy, DOI: 10.1016/j.renene.2008.05.032, Vol. 34, Issue 3, pp. 583-590, 2009.

Lydia M., Selvakumar A. I., Kumar S. S., Kumar G. E. P., “Advanced Algorithms for Wind Turbine Power Curve Modelingâ€, IEEE Transactions on Sustainable Energy, DOI: 10.1109/TSTE.2013.2247641, Vol. 4, Issue 3, pp. 827-835, 2013.

Seo S., Oh S. D., Kwak H. Y., “Wind turbine power curve modeling using maximum likelihood estimation methodâ€, Renewable Energy, DOI: 10.1016/j.renene.2018.09.087, Vol. 136, pp. 1164-1169, 2019.

Goudarzi A., Swanson A. G., Kazemi M., Wang K., “Intelligent wind turbine power curve modelling using the third version of cultural algorithm (CA3)â€, International Journal of Renewable Energy Research, Vol.7, No.3, pp. 1340- 1351, 2017.

Ma J., Yang M., Lin Y., “Ultra-Short-Term Probabilistic Wind Turbine Power Forecast Based on Empirical Dynamic Modelingâ€, IEEE Transactions on Sustainable Energy, DOI: 10.1109/TSTE.2019.2912270, Vol. 11, Issue 2, pp. 906-915, 2020.

Zierath J., Rachholz R., Rosenow S. E., Bockhahn R., Schulze A., Woernle C., “Experimental identification of modal parameters of an industrial 2-MW wind turbineâ€, Wind Energy, DOI: 10.1002/we.2165, Vol. 21, pp. 338-356, 2018.

Jin R., Wang L., Huang C., Jiang S., “Wind turbine generation performance monitoring with Jaya algorithmâ€, International Journal of Energy Research, DOI: 10.1002/er.4382, Vol. 43, pp. 1604-1611, 2019.

MarÄiukaitis M., ŽutautaitÄ— I., MartiÅ¡auskas L., JokÅ¡as B., GeceviÄius G., Sfetsos A., “Non-linear regression model for wind turbine power curveâ€, Renewable Energy, DOI: 10.1016/j.renene.2017.06.039, Vol. 113, pp. 732-741, 2017.

Tao S., Xu Q., Feijóo A., Kuenzel S., Bokde N., “Integrated Wind Farm Power Curve and Power Curve Distribution Function Considering the Wake Effect and Terrain Gradientâ€, Energies, DOI: 10.3390/en12132482, Vol. 12, 2482, 2019.

Yesilbudak M., “A novel power curve modeling framework for wind turbinesâ€, Advances in Electrical and Computer Engineering, DOI: 10.4316/AECE.2019.03004, Vol. 19, Issue 3, pp. 29-40, 2019.

Rose J., Hiskens I. A., “Estimating wind turbine parameters and quantifying their effects on dynamic behaviorâ€, IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, Pennsylvania, USA, DOI: 10.1109/PES.2008.4596862, pp. 1-7, 20-24 July 2008.

Jaya K. M., Bhargava V., Donepudi J., “BEM prediction of wind turbine operation and performanceâ€, International Journal of Renewable Energy Research, Vol.8, No.4, pp. 1962-1973, 2018.

Cao Y., Hu Q., Shi H., Zhang Y., “Prediction of wind power generation base on neural network in consideration of the fault timeâ€, IEEJ Transactions on Electrical and Electronic Engineering, DOI: 10.1002/tee.22853, Vol. 14, pp. 670-679, 2019.

Demirdelen T., Tekin P., Aksu I. O., Ekinci F., “The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligenceâ€, Sustainability, DOI: 10.3390/su11174803, Vol. 11:4803, 2019.

Bai L, Crisostomi E., Raugi M., Tucci M., “Wind turbine power curve estimation based on earth mover distance and artificial neural networksâ€, IET Renewable Power Generation, DOI: 10.1049/iet-rpg.2019.0530, Vol. 13, Issue 15, pp. 2939-2946, 2019.

Bartolomé M., Sehnke F., Lazzús J. A., Salfate I., Felder M., Montecinos S., “Wind turbine power curve modeling based on Gaussian Processes and Artificial Neural Networksâ€, Renewable Energy, DOI: 10.1016/j.renene.2018.02.081, Vol. 125, pp. 1015-1020, 2018.

Ciulla G., D’Amico A., Dio V. D., Brano V. L., “Modelling and analysis of real-world wind turbine power curves: Assessing deviations from nominal curve by neural networksâ€, Renewable Energy, DOI: 10.1016/j.renene.2019.03.075, Vol. 140, pp. 477-492, 2019.

Renani E. T., Delshad M. M., Elias M. F. M., Rahim N. A., “Development of an enhanced parametric model for wind turbine power curveâ€, Applied Energy, DOI: 10.1016/j.apenergy.2016.05.124, Vol. 177, pp. 544-552, 2016.

Caro F. D., Vaccaro A., Villacci D., “Adaptive Wind Generation Modeling by Fuzzy Clustering of Experimental Dataâ€, Electronics, DOI: 10.3390/electronics7040047, Vol. 7, 47, 2018.

Ouyang T., Kusiak A., He Y., “Modeling wind-turbine power curve: A data partitioning and mining approachâ€, Renewable Energy, DOI: 10.1016/j.renene.2016.10.032, Vol. 102, pp. 1-8, 2017.

Pei S., Li Y., “Wind Turbine Power Curve Modeling with a Hybrid Machine Learning Techniqueâ€, Applied Sciences, DOI: 10.3390/app9224930, Vol. 9, 4930, 2019.

Pandit R. K., Infield D., “Comparative analysis of Gaussian Process power curve models based on different stationary covariance functions for the purpose of improving model accuracyâ€, Renewable Energy, DOI: 10.1016/j.renene.2019.03.047, Vol. 140, pp. 190-202, 2019.

Mehrjoo M., Jozani M. J., Pawlak M., “Wind turbine power curve modeling for reliable power prediction using monotonic regressionâ€, Renewable Energy, DOI: 10.1016/j.renene.2019.08.060, Vol. 147, pp. 214-222, 2020.

Gandomi A. H., “Interior search algorithm (ISA): A novel approach for global optimizationâ€, ISA Transactions, DOI: 10.1016/j.isatra.2014.03.018, Vol. 53, Issue 4, pp. 1168-1183, 2014.

Moravej M., Moghari S. M. H., “Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approachâ€, Water Resources Management, DOI: 10.1007/s11269-016-1358-y, Vol. 30, Issue 10, pp. 3389-3407, 2016.

Kumar M., Rawat T. K., Jain A., Singh A. A., Mittal A., “Design of Digital Differentiators Using Interior Search Algorithmâ€, Procedia Computer Science, DOI: 10.1016/j.procs.2015.07.351, Vol. 57, pp. 368-376, 2015.

Bentouati B., Chettih S., Chaib L., “Interior search algorithm for optimal power flow with non-smooth cost functionsâ€, Cogent Engineering, DOI: 10.1080/23311916.2017.1292598, Vol. 4, Issue 1, 1292598, 2017.

Trivedi I. N., Jangir P., Bhoye M., Jangir N., “An economic load dispatch and multiple environmental dispatch problem solution with microgrids using interior search algorithmâ€, Neural Computing and Applications, DOI: 10.1007/s00521-016-2795-5, Vol. 30, pp. 2173-2189, 2018.

Khan K., Kamal A., Basit A., Ahmad T., Ali H., Ali A., “Economic Load Dispatch of a Grid-Tied DC Microgrid Using the Interior Search Algorithmâ€, Energies, DOI: 10.3390/en12040634, Vol. 12, 634, 2019.

Kler D., Rana K. P. S., Kumar V., “Parameter extraction of fuel cells using hybrid interior search algorithmâ€, International Journal of Energy Research, DOI: 10.1002/er.4424, Vol. 43, pp. 2854-2880, 2019.

El-Hay E. A., El-Hameed M. A., El-Fergany A. A., “Parameters’ optimization of SOFC for steady state and transient simulationsâ€, Energy, DOI: 10.1016/j.energy.2018.10.038, Vol. 166, pp. 451-461, 2018.

Kler D., Goswami Y., Rana K. P. S., Kumar V., “A novel approach to parameter estimation of photovoltaic systems using hybridized optimizerâ€, Energy Conversion and Management, DOI: 10.1016/j.enconman.2019.01.102, Vol. 187, pp. 486-511, 2019.

Villanueva D., Feijóo A. E., “Reformulation of parameters of the logistic function applied to power curves of wind turbinesâ€, Electric Power Systems Research, DOI: 10.1016/j.epsr.2016.03.045, Vol. 137, pp. 51-58, 2016.

Villanueva D., Feijóo A. E., “Comparison of logistic functions for modeling wind turbine power curvesâ€, Electric Power Systems Research, DOI: 10.1016/j.epsr.2017.10.028, Vol. 155, pp. 281-288, 2018.

Wang Y., Hu Q., Li L., Foley A. M., Srinivasan D., “Approaches to wind power curve modeling: A review and discussionâ€, Renewable and Sustainable Energy Reviews, DOI: 10.1016/j.rser.2019.109422, Vol. 116, 109422, 2019.

Gandomi A. H., Roke D. A., “Engineering optimization using interior search algorithmâ€, IEEE Symposium on Swarm Intelligence, Orlando, Florida, USA, DOI: 10.1109/SIS.2014.7011771, pp. 1-7, 9-12 December 2014.




DOI (PDF): https://doi.org/10.20508/ijrer.v10i3.11011.g8010

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4