Effect of Hydrodynamically Designed Blades on the Efficiency of a Michell-Banki Turbine

Jorge Andrés Sierra Del Rio, Steven Galvis-Holguin, Diego Hincapie Zuluaga, Edwin Chica Arrieta

Abstract


This work presents a numerical study conducted in ANSYS CFX® V18.1 that seeks to improve the efficiency of a Michell Banki turbine by modifying one of its geometric parameters: the profile of the blades in the runner. Four aerodynamic profiles, 20-32C, A18, NACA 9412-15 and NACA 9412-ST, were selected and modified. Subsequently, they were integrated into the turbine runner to compare their performance to that of a turbine model configured with the conventional blade profile by means of computer simulations. In total, five (5) turbine models were studied under the same operating conditions: inlet flow velocity, 3.6 m/s; runner angular velocity, 450 RPM; and outlet pressure, 1 ATM. The simulation results revealed an efficiency increase of 7.37%, 7% and 0.76% with 20-32C, NACA 9412-ST and NACA 9412-15 blade profiles, respectively.

Keywords


ANSYS CFX; Cross-flow turbine; Hydrodynamic profile; CFD analysis; Micropower; Transient simulation

Full Text:

PDF

References


P. Lojano, J. Cabrera, A. Lojano, D. Morales, and D. Icaza, “Voltage data collection using arduino and matlab of a photovoltaic wind power system in the locality of tarqui the cuenca ecuador,†in 8th International Conference on Renewable Energy Research and Applications, 2019, pp. 582–586, doi: 10.1109/ICRERA47325.2019.8997035.

M. R. D. and D. S. C., “CFD Study of a Vertical Axis Counter-Rotating Wind Turbine,†in 6th International Conference on Renewable Energy Research and Applications, 2017, vol. 5, doi: 10.1109/ICRERA.2017.8191273.

D. Icaza and D. Borge-Diez, “Potential sources of renewable energy for the energy supply in the city of cuenca-ecuador with towards a smart grid,†in 8th International Conference on Renewable Energy Research and Applications, 2019, pp. 603–610, doi: 10.1109/ICRERA47325.2019.8997114.

D. S. Semerci and T. Yavuz, “Increasing efficiency of an existing francis turbine by rehabilitation process,†in International Conference on Renewable Energy Research and Applications, 2016, vol. 5, pp. 107–111, doi: 10.1109/ICRERA.2016.7884440.

N. Unidas, “La sostenibilidad del desarrollo a 20 años de la cumbre de la tierra: Avances, brechas y lineamientos estratégicos para América Latina y el Caribe,†2011.

D. Andrade, C. Curiel, F. Kenyery, O. Aguill, and M. Asuaje, “Numerical Investigation of the Internal Flow in a Banki Turbine,†Int. J. Rotating Mach., pp. 1–12, 2011, doi: 10.1155/2011/841214.

Ossberger, “La turbina original OSSBERGER ® de flujo cruzado,†Weißenburg/Alemania, 2016.

J. Zanette, D. Imbault, and A. Tourabi, “A design methodology for cross flow water turbines,†Renew. Energy, vol. 35, no. 5, pp. 997–1009, 2010, doi: 10.1016/j.renene.2009.09.014.

D. Adanta, A. I. Siswantara, and A. P. Prakoso, “Performance Comparison of NACA 6509 and 6712 on Pico Hydro Type Cross- Flow Turbine by Numerical Method,†J. Adv. Res. Fluid Mech. Therm. Sci., no. May, 2018.

L. i. V. garcía and W. M. E. Monsalve, “Análisis de la Influencia del Porcentaje de Apertura del Alabe Director Sobre la Potencia Hidráulica de un Pico Generador de Flujo Cruzado Mediante un Estudio Numérico en Software CFD,†Universidad de antioquia, 2012.

V. Sammartano, C. Aricò, A. Carravetta, O. Fecarotta, and T. Tucciarelli, “Banki-Michell optimal design by computational fluid dynamics testing and hydrodynamic analysis,†Energies, vol. 6, no. 5, pp. 2362–2385, 2013, doi: 10.3390/en6052362.

“A numerical investigation of flow profile and performance of a low cost Crossflow turbine,†Int. J. Energy Environ., vol. 5, no. 3, pp. 275–296, 2014.

Y. C. Ceballos, M. C. Valencia, D. H. Zuluaga, J. S. Del Rio, and S. V. García, “Influence of the number of blades in the power generated by a Michell Banki Turbine,†Int. J. Renew. Energy Res., vol. 7, no. 4, pp. 1989–1997, 2017.

Mario Alfonso Arellano Vilchez, “Geometría del álabe del rotor para mejorar el toruqe en una turbina Michell-Banki,†2015.

C. A. H. Bazo, “Diseño y Estandarización de Turbinas Michell-Banki,†Organ. Latinoam. Energía, p. Quito-Ecuador, 1980.

A. Benzerdjeb, B. Abed, H. Achache, M. K. Hamidou, M. Bordjane, and A. M. Gorlov, “Numerical study on the performance of darrieus turbine by K-ϵ standard and K-ϵ EARSM turbulence models,†in 2017 6th International Conference on Renewable Energy Research and Applications, 2017, pp. 528–533, doi: 10.1109/DISTRA.2017.8191117.

I. ANSYS, “ANSYS CFX-Solver Theory Guide,†release. U.S.A, 2013.

C. A. Mockmore and F. Merryfield, “The Banki Water Turbine, Engineering Experiment Station (of Oregon State College),†Bull. Ser., no. 25, p. 2, 1949.

R. C. Adhikari and D. H. Wood, “A new nozzle design methodology for high efficiency crossflow hydro turbines,†Energy Sustain. Dev., vol. 41, pp. 139–148, 2017, doi: 10.1016/j.esd.2017.09.004.




DOI (PDF): https://doi.org/10.20508/ijrer.v10i3.10939.g7990

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4