Innovative Solar Photovoltaic and Thermoelectric Power Generator for a Recirculating Aquaculture System

Gideon Guyo Kidegho, Robert Kinyua, Christopher Muriithi, Francis Njoka

Abstract


Solar Photovoltaic power generation is fast gaining popularity in Kenya. However, the effects of high cell temperatures continue to be a major hindrance to their efficiency especially for standalone systems. Water can be used for cooling when combined with thermoelectric generators (TEG) in areas where it is available achieving double gains. Kisumu Nyalenda, in Kenya is one such site where weather and irradiance data have been collected for the design of a PV+TEG power generation system. In this paper, a 3-tier study is conducted to evaluate TEG power, voltage, current and temperature distribution and the overall performance of the hybrid system. Numerical simulations are conducted on Matlab Simulink platform model based on a medium temperature gradient (10 0C - 100 0C) category TEG. Bench study setups are done replicating the weather and irradiation conditions of a Recirculation Aquaculture System (RAS) in Nyalenda Kisumu. The TEG bench results are then used to guide the design of the autonomous PV+TEG power generation system. Obtained results confirm that by accurately modelling the TEG and matching its internal resistance to the load, maximum power can be achieved. It is further confirmed that using series-parallel connection of TEGs stack under PV modules operating at temperature gradients varying between 5 0C to 35 0C, a 20 kWp PV system gains an extra 15.7% from TEG array with a further 1.05% power gain from PV module temperature reduction.

 

 


Keywords


Thermoelectric generators, Temperature gradient, PV Cooling, Autonomous Aquaculture system

Full Text:

PDF

References


F. Creutzig, P. Agoston, J.C. Goldschmidt, G. Luderer, G. Nemet, R.C. Pietzcker, The underestimated potential of solar energy to mitigate climate change, Nature Energy. 2 (2017) 17140. doi:10.1038/nenergy.2017.140.

A. Kane, V. Verma, Characterization of PV cell-environmental factors consideration, içinde: 2013 International Conference on Power, Energy and Control (ICPEC), IEEE, Sri Rangalatchum Dindigul, 2013: ss. 26-29. doi:10.1109/ICPEC.2013.6527618.

A. Razak, Y.M. Irwan, W.Z. Leow, M. Irwanto, I. Safwati, M. Zhafarina, Investigation of the Effect Temperature on Photovoltaic (PV) Panel Output Performance, International Journal on Advanced Science, Engineering and Information Technology. 6 (2016) 682. doi:10.18517/ijaseit.6.5.938.

Y. Xu, Y. X., L. Yang, Full-spectrum photon management of solar cell structures for photovoltaic–thermoelectric hybrid systems, Energy Conversion and Management. 103 (2015) 533-541. doi:10.1016/j.enconman.2015.07.007.

N.K.Kasim, Hazim H.Hussain, Alaa N.Abed, Performance Analysis of Grid-Connected CIGS PV Solar System and Comparison with PVsyst Simulation Program, International Journal of Smart Grıd. Vol.3, (2019) 172-179.

A.R. Nejad, A.R. Nejad, M.E. Abedi, A.R. Nejad, Production of electrical power in very extreme-temperature environmental conditions: A new implementation of thermoelectric generators, içinde: 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), IEEE, San Diego, CA, 2017: ss. 468-472. doi:10.1109/ICRERA.2017.8191104.

C. Temaneh-Nyah, L. Mukwekwe, An investigation on the effect of operating temperature on power output of the photovoltaic system at University of Namibia Faculty of Engineering and I.T campus, içinde: 2015 Third International Conference on Digital Information, Networking, and Wireless Communications (DINWC), IEEE, Moscow, Russia, 2015: ss. 22-29. doi:10.1109/DINWC.2015.7054211.

C.U. Ike, effects of temperature on performance of a solar PV system in E. Nigeria, International Journal of Engineering And Science. Vol.3 (2013) 10-14.

M. Benhmida, C. Hajjaj, R. Bendaoud, H. Amiry, S. Bounouar, A. Ghennioui, F. Chanaa, S. Yadir, A. Elhassnaoui, H. Ezzaki, A PVT Cooling System Design and Realization: Temperature Effect on the PV Module Performance Under Real Operating Conditions, International Journal Of Renewable Energy Research. Vol.9 (2019).

H.A. Hussien, M. Hasanuzzaman, A.H. Noman, A.R. Abdulmunem, Enhance Photovoltaic/Thermal System Performance by Using Nanofluid, (2013) 5.

N. Yadav, M. Gupta, K. Sudhakar, Energy assessment of floating photovoltaic system, içinde: 2016 International Conference on Electrical Power and Energy Systems (ICEPES), IEEE, Bhopal, India, 2016: ss. 264-269. doi:10.1109/ICEPES.2016.7915941.

F. Kawtharani, M. Hammoud, A. Hallal, A. Shaito, A. Assi, I. Assi, Cooling P.V Modules using phase change materials, içinde: 2017 29th International conference on microelectronics (ICM), IEEE, Beitut, Lebanon, 2017. doi:10.1109/ICM.2017.8268830.

I. Al Siyabi, S. Khanna, S. Sundaram, T. Mallick, Experimental and Numerical Thermal Analysis of Multi-Layered Microchannel Heat Sink for Concentrating Photovoltaic Application, Energies. 12 (2018) 122. doi:10.3390/en12010122.

W.A.M. Al-Shohani, R. Al-Dadah, S. Mahmoud, Reducing the thermal load of a photovoltaic module through an optical water filter, Applied Thermal Engineering. 109 (2016) 475-486. doi:10.1016/j.applthermaleng.2016.08.107.

M. Rosa-Clot, P. Rosa-Clot, G.M. Tina, C. Ventura, Experimental photovoltaic-thermal Power Plants based on TESPI panel, Solar Energy. 133 (2016) 305-314. doi:10.1016/j.solener.2016.03.024.

G. Li, X. Chen, Y. Jin, Analysis of the Primary Constraint Conditions of an Efficient Photovoltaic-Thermoelectric Hybrid System, (2017) 12.

B.S Dallan, J. Schumann, F. Lesage, Performance evaluation of a photoelectric–thermoelectric cogeneration hybrid system, Solar Energy. 118 (2015) 276-285.

A. Belkaid, I. Colak, K. Kayisli, R. Bayindir, H.I. Bulbul, Maximum Power Extraction from a Photovoltaic Panel and a Thermoelectric Generator Constituting a Hybrid Electrical Generation System, içinde: 2018 International Conference on Smart Grid (icSmartGrid), IEEE, Nagasaki, Japan, 2018: ss. 276-282. doi:10.1109/ISGWCP.2018.8634534.

K. Li, C. Liu, P. Chen, A 1 KW Thermoelectric Generator for Low-temperature Geothermal Resources, içinde: Thirty-Ninth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 2014: s. 12.

G. Li, S. Shittu, T.M.O. Diallo, M. Yu, X. Zhao, J. Ji, A review of solar photovoltaic-thermoelectric hybrid system for electricity generation, Energy. 158 (2018) 41-58. doi:10.1016/j.energy.2018.06.021.

S. Soltani, A. Kasaeian, H. Sarrafha, D. Wen, An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application, Solar Energy. 155 (2017) 1033-1043. doi:10.1016/j.solener.2017.06.069.

J. Lin, T. Liao, B. Lin, Performance analysis and load matching of a photovoltaic–thermoelectric hybrid system, Energy Conversion and Management. 105 (2015) 891-899. doi:10.1016/j.enconman.2015.08.054.

J. Zhang, H. Zhai, Z. Wu, Y. Wang, H. Xie, M. Zhang, Enhanced performance of photovoltaic–thermoelectric coupling devices with thermal interface materials, Energy Reports. 6 (2020) 116-122. doi:10.1016/j.egyr.2019.12.001.

T.M. Abu-Rahmeh, Efficiency of Photovoltaic Modules Using Different Cooling Methods: A Comparative Study, Journal of Power and Energy Engineering. 05 (2017) 32-45. doi:10.4236/jpee.2017.59003.

H. Hashim, J.J. Bomphrey, G. Min, Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system, Renewable Energy. 87 (2016) 458-463. doi:10.1016/j.renene.2015.10.029.

K. Kawabuchi, T. Yachi, Analysis of the heat transfer characteristics in a thermoelectric conversion device, içinde: 2012 International Conference on Renewable Energy Research and Applications (ICRERA), IEEE, Nagasaki, Japan, 2012: ss. 1-5. doi:10.1109/ICRERA.2012.6477265.

B. Asfandiyar, B. Cai., L.-D. Zhao., J.-F. Li., High thermoelectric figure of merit ZT > 1 in SnS polycrystals, Journal of Materiomics. 6 (2020) 77-85. doi:10.1016/j.jmat.2019.12.003.

A. Hidaka, T. Tsuji, S. Matsumoto, A thermoelectric power generation system with ultra low input voltage boost converter with maximum power point tracking, içinde: 2012 International Conference on Renewable Energy Research and Applications (ICRERA), IEEE, Nagasaki, Japan, 2012: ss. 1-5. doi:10.1109/ICRERA.2012.6477474.

R.B. Kolambekar, K. Bhole, Development of Prototype for Waste Heat Energy Recovery from Thermoelectric System at Godrej Vikhroli Plant, (2015) 6.

D. Rowe, Thermoelectrics and environmentally friendly sources of electrical energy, içinde: Thermoelectrics and environmentally friendly sources of electrical energy, 1999: ss. 1251-1256.

E. Kanimba, Z. Tian, Modeling of a Thermoelectric Generator Device, içinde: S. Skipidarov, M. Nikitin (Ed.), Thermoelectrics for Power Generation - A Look at Trends in the Technology, InTech, 2016. doi:10.5772/65741.

Z.M. Dalala, Energy harvesting using thermoelectric generators, içinde: 2016 IEEE International Energy Conference (ENERGYCON), IEEE, Leuven, Belgium, 2016: ss. 1-6. doi:10.1109/ENERGYCON.2016.7514088.

N. Karami and N. Moubayed, New Modeling Approach and Validation of a Thermoelectric Generator, IEEE. (2014).

M.J. Dousti, A. Petraglia, M. Pedram, Accurate Electrothermal Modeling of Thermoelectric Generators, içinde: 2015: ss. 1603-1606.

H. Gichungi, Solar Potential in Kenya, (2012). https://www.sv.uio.no/iss/english/research/projects/solar-transitions/announcements/Kenya-Henry_Gichungi.pdf.




DOI (PDF): https://doi.org/10.20508/ijrer.v10i3.10668.g7985

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4