Simulation and Management Strategy of Energy Flow in Hybrid System

Zeïnabou NOUHOU BAKO, Mahamadou Abdou Tankari, Amadou Seidou Maiga

Abstract


This paper presents a control algorithm based on energy dispatch strategy in a remote area of Niger in West Africa region. . The system is a micro grid equipped with solar panels, conventional source and energy storage units. The hybrid energy management system presented is meant for rural and remote area power supply. The hybrid system configuration focuses on providing an uninterrupted power supply the maximum loads energy demand. This approach can improve the living conditions through the increase the economy and easiness of access to energy through a reasonable cost from an economic point of view to avoid over-sizing of production sources. The optimal configuration and model details of the proposed hybrid energy system has been described. The aim of this paper was to improve the design, operation and control requirement of a hybrid system in a specific area of Dakoro in Niger. The proposed control energy flow management strategy has been brought out by performing experimental studies on a laboratory prototype.


Full Text:

PDF

References


H. Liming, « Financing rural renewable energy: A comparison between China and India », Renew. Sustain. Energy Rev., vol. 13, no 5, p. 1096‑1103, juin 2009, doi: 10.1016/j.rser.2008.03.002.

J. Benedek, T.-T. Sebestyén, et B. Bartók, « Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development », Renew. Sustain. Energy Rev., vol. 90, p. 516‑535, juill. 2018, doi: 10.1016/j.rser.2018.03.020.

M. Hafner, S. Tagliapietra, et L. de Strasser, « The Challenge of Energy Access in Africa », in Energy in Africa: Challenges and Opportunities, M. Hafner, S. Tagliapietra, et L. de Strasser, Éd. Cham: Springer International Publishing, 2018, p. 1‑21.

D. Ahuja et M. Tatsutani, « Sustainable energy for developing countries », SAPIENS Surv. Perspect. Integrating Environ. Soc., no 2.1, avr. 2009.

A. Brew-Hammond, « Energy access in Africa: Challenges ahead », Energy Policy, vol. 38, no 5, p. 2291‑2301, mai 2010, doi: 10.1016/j.enpol.2009.12.016.

K. Kaygusuz, « Energy services and energy poverty for sustainable rural development », Renew. Sustain. Energy Rev., vol. 15, no 2, p. 936‑947, févr. 2011, doi: 10.1016/j.rser.2010.11.003.

F. M. Butera, P. Caputo, R. S. Adhikari, et A. Facchini, « Urban Development and Energy Access in Informal Settlements. A Review for Latin America and Africa », Procedia Eng., vol. 161, p. 2093‑2099, janv. 2016, doi: 10.1016/j.proeng.2016.08.680.

A. Chaurey, M. Ranganathan, et P. Mohanty, « Electricity access for geographically disadvantaged rural communities—technology and policy insights », Energy Policy, vol. 32, no 15, p. 1693‑1705, oct. 2004, doi: 10.1016/S0301-4215(03)00160-5.

J. T. Murphy, « Making the energy transition in rural east Africa: Is leapfrogging an alternative? », Technol. Forecast. Soc. Change, vol. 68, no 2, p. 173‑193, oct. 2001, doi: 10.1016/S0040-1625(99)00091-8.

M. J. Herington, E. van de Fliert, S. Smart, C. Greig, et P. A. Lant, « Rural energy planning remains out-of-step with contemporary paradigms of energy access and development », Renew. Sustain. Energy Rev., vol. 67, p. 1412‑1419, janv. 2017, doi: 10.1016/j.rser.2016.09.103.

N. S. Ouedraogo, « Modeling sustainable long-term electricity supply-demand in Africa », Appl. Energy, vol. 190, no Supplement C, p. 1047‑1067, mars 2017, doi: 10.1016/j.apenergy.2016.12.162.

A. Gupta, R. P. Saini, et M. P. Sharma, « Modelling of hybrid energy system—Part I: Problem formulation and model development », Renew. Energy, vol. 36, no 2, p. 459‑465, févr. 2011, doi: 10.1016/j.renene.2010.06.035.

J. Terrapon-Pfaff, C. Dienst, J. König, et W. Ortiz, « A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries », Renew. Sustain. Energy Rev., vol. 40, p. 1‑10, déc. 2014, doi: 10.1016/j.rser.2014.07.161.

H. Shayeghi, E. Shahryari, M. Moradzadeh, et P. Siano, « A Survey on Microgrid Energy Management Considering Flexible Energy Sources », Energies, vol. 12, no 11, p. 2156, janv. 2019, doi: 10.3390/en12112156.

I. Youm, J. Sarr, M. Sall, et M. M. Kane, « Renewable energy activities in Senegal: a review », Renew. Sustain. Energy Rev., vol. 4, no 1, p. 75‑89, mars 2000, doi: 10.1016/S1364-0321(99)00009-X.

F. Kemausuor, G. Y. Obeng, A. Brew-Hammond, et A. Duker, « A review of trends, policies and plans for increasing energy access in Ghana », Renew. Sustain. Energy Rev., vol. 15, no 9, p. 5143‑5154, déc. 2011, doi: 10.1016/j.rser.2011.07.041.

M. O. Oseni, « Improving households’ access to electricity and energy consumption pattern in Nigeria: Renewable energy alternative », Renew. Sustain. Energy Rev., vol. 16, no 6, p. 3967‑3974, août 2012, doi: 10.1016/j.rser.2012.03.010.

M. O. Dioha et N. V. Emodi, « Investigating the Impacts of Energy Access Scenarios in the Nigerian Household Sector by 2030 », Resources, vol. 8, no 3, p. 127, sept. 2019, doi: 10.3390/resources8030127.

A. Fashina, M. Mundu, O. Akiyode, L. Abdullah, D. Sanni, et L. Ounyesiga, « The Drivers and Barriers of Renewable Energy Applications and Development in Uganda: A Review », Clean Technol., vol. 1, no 1, p. 9‑39, déc. 2019, doi: 10.3390/cleantechnol1010003.

P. Nema, R. K. Nema, et S. Rangnekar, « A current and future state of art development of hybrid energy system using wind and PV-solar: A review », Renew. Sustain. Energy Rev., vol. 13, no 8, p. 2096‑2103, oct. 2009, doi: 10.1016/j.rser.2008.10.006.

P. Bajpai et V. Dash, « Hybrid renewable energy systems for power generation in stand-alone applications: A review », Renew. Sustain. Energy Rev., vol. 16, no 5, p. 2926‑2939, juin 2012, doi: 10.1016/j.rser.2012.02.009.

J. L. Bernal-Agustín et R. Dufo-López, « Simulation and optimization of stand-alone hybrid renewable energy systems », Renew. Sustain. Energy Rev., vol. 13, no 8, p. 2111‑2118, oct. 2009, doi: 10.1016/j.rser.2009.01.010.

N. Bayati, A. Hajizadeh, et M. Soltani, « Accurate Modeling of DC Microgrid for Fault and Protection Studies », in 2018 International Conference on Smart Energy Systems and Technologies (SEST), 2018, p. 1‑6, doi: 10.1109/SEST.2018.8495679.

W. Zhou, C. Lou, Z. Li, L. Lu, et H. Yang, « Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems », Appl. Energy, vol. 87, no 2, p. 380‑389, févr. 2010, doi: 10.1016/j.apenergy.2009.08.012.

S. M. Shaahid et M. A. Elhadidy, « Opportunities for utilization of stand-alone hybrid (photovoltaic + diesel + battery) power systems in hot climates », Renew. Energy, vol. 28, no 11, p. 1741‑1753, sept. 2003, doi: 10.1016/S0960-1481(03)00013-2.

B. Indu Rani, G. Saravana Ilango, et C. Nagamani, « Control Strategy for Power Flow Management in a PV System Supplying DC Loads », IEEE Trans. Ind. Electron., vol. 60, no 8, p. 3185‑3194, août 2013, doi: 10.1109/TIE.2012.2203772.

R. Rigo-Mariani, B. Sareni, X. Roboam, et C. Turpin, « Optimal power dispatching strategies in smart-microgrids with storage », Renew. Sustain. Energy Rev., vol. 40, p. 649‑658, déc. 2014, doi: 10.1016/j.rser.2014.07.138.

A. S. Aziz, M. F. N. Tajuddin, M. R. Adzman, M. A. M. Ramli, et S. Mekhilef, « Energy Management and Optimization of a PV/Diesel/Battery Hybrid Energy System Using a Combined Dispatch Strategy », Sustainability, vol. 11, no 3, p. 1‑26, 2019.

B. Kocaman et N. Abut, « The Role of Energy Management in Microgrids With Hybrid Power Generation System », Bitlis Eren Univ. J. Sci. Technol., vol. 5, no 1, p. 31‑36, juin 2015, doi: 10.17678/beujst.77662.

H. Kanchev, D. Lu, F. Colas, V. Lazarov, et B. Francois, « Energy Management and Operational Planning of a Microgrid With a PV-Based Active Generator for Smart Grid Applications », IEEE Trans. Ind. Electron., vol. 58, no 10, p. 4583‑4592, oct. 2011, doi: 10.1109/TIE.2011.2119451.

L. Olatomiwa, S. Mekhilef, A. S. N. Huda, et K. Sanusi, « Techno-economic analysis of hybrid PV–diesel–battery and PV–wind–diesel–battery power systems for mobile BTS: the way forward for rural development », Energy Sci. Eng., vol. 3, no 4, p. 271‑285, 2015, doi: 10.1002/ese3.71.

J. Jung et M. Villaran, « Optimal planning and design of hybrid renewable energy systems for microgrids », Renew. Sustain. Energy Rev., vol. 75, p. 180‑191, août 2017, doi: 10.1016/j.rser.2016.10.061.

R. E. Brown, A. P. Hanson, H. L. Willis, F. A. Luedtke, et M. F. Born, « Assessing the reliability of distribution systems », IEEE Comput. Appl. Power, vol. 14, no 1, p. 44‑49, janv. 2001, doi: 10.1109/67.893355.

G. Niu, B.-S. Yang, et M. Pecht, « Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance », Reliab. Eng. Syst. Saf., vol. 95, no 7, p. 786‑796, juill. 2010, doi: 10.1016/j.ress.2010.02.016.

Z. N. Bako et M. A. Tankari, « Design Methodology of a Multi-village Microgrid », Int. J. Smart Grid - IjSmartGrid, vol. 2, no 1, p. 67‑76, nov. 2018.

Z. BAKO et al., « Experiment-Based Methodology of Kinetic Battery Modeling for Energy Storage », IEEE Trans. Ind. Appl. Accepté Sous Presse, 2018.

A. H. Fathima et K. Palanisamy, « Optimization in microgrids with hybrid energy systems – A review », Renew. Sustain. Energy Rev., vol. 45, p. 431‑446, mai 2015, doi: 10.1016/j.rser.2015.01.059.

M. Clerc et J. Kennedy, « The particle swarm - explosion, stability, and convergence in a multidimensional complex space », IEEE Trans. Evol. Comput., vol. 6, no 1, p. 58‑73, févr. 2002, doi: 10.1109/4235.985692.

M. Clerc, Particle Swarm Optimization. John Wiley & Sons, 2010.

S. Lim, M. Montakhab, et H. Nouri, « A constriction factor based particle swarm optimization for economic dispatch », présenté à The 2009 European Simulation and Modelling Conference (ESM’2009), Leicester, United Kingdom, 2009.

S. Sengupta et A. K. Das, « Particle Swarm Optimization based incremental classifier design for rice disease prediction », Comput. Electron. Agric., vol. 140, p. 443‑451, août 2017, doi: 10.1016/j.compag.2017.06.024.

L. Idoumghar, D. Fodorean, et A. Miraoui, « Using hybrid Constricted Particles Swarm and simulated annealing algorithm for electric motor design », in Digests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation, 2010, p. 1‑1, doi: 10.1109/CEFC.2010.5481410.




DOI (PDF): https://doi.org/10.20508/ijrer.v10i2.10103.g7946

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4