Experimental investigation and characterization of innovative bifacial silicon solar cells

Massimo Caruso, Fabio Ricco Galluzzo, Luca Zumbo, Gianluca Acciari, Gabriele Adamo, Guido Ala, Alessandro Busacca, Cosimo Gerardi, Salvatore Lombardo, Rosario Miceli, Antonino Parisi, Giuseppe Schettino, Fabio Viola

Abstract


The interest towards bifacial PV technology has increased over the last years, due to its potential capability of obtaining higher efficiencies with respect to traditional monofacial cells. Thus, the aim of this work is to present an experimental investigation on an innovative photovoltaic technology, such as the bifacial solar cells based on monocrystalline substrate. This analysis is mainly based on the determination of the current density/voltage, power density/voltage, External Quantum Efficiency (EQE) and Laser Beam Induced Current (LBIC) characterization. Interesting results are presented and discussed, demonstrating that the bifacial silicon solar cells can be a very promising technology with high electrical performances and efficiency.

Keywords


Bifacial solar cells; LBIC; PERT; Electrical characterization

Full Text:

PDF

References


Hiroshi, M. Radiation energy transducing device. U.S. Patent 3 278 811 A, 1966.

Kopecek, R. et al. Bifaciality: One small step for technology, one giant leap for kWh cost reduction. Photovoltaics Int., 2015, 26, 32–45.

Kerr, M. J.; Cuevas, A.; Campbell, P. Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination. Progr. Photovoltaics Res. Appl., 2003, 11, 97–104.

Yalçin, L.; Öztürk, R. Performance comparison of c-Si, mc-Si and a-Si thin film PV by PVsyst simulation. J. Optoelectron. Adv. Mater., 2013, 15, 326–334.

Richter, A.; Hermle, M.; Glunz, S. Crystalline silicon solar cells reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovoltaics, 2013, 3, 1184–1191.

Yoshikawa, K. et al. Solar energy materials and solar cells exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Solar Energy Mater. Solar Cells, 2017, 173, 37–42.

Cuevas, A. The early history of bifacial solar cells. Proc. 20th Eur. Photovolt. Sol. Energy Conf., 2005, 801–805.

Guo, S. Y.; Walsh, T. M.; Peters, M. Vertically mounted bifacial photovoltaic modules: A global analysis. Energy, 2013, 61, 447-454.

Yusufoglu, U. A. et al. Analysis of the annual performance of bifacial modules and optimization methods. IEEE J. Photovolt., 2015, 5, 320–328.

Chieng, Y. K.; Green, M. A. Computer simulation of enhanced output from bifacial photovoltaic modules. Prog. Photovolt., 1993, 1, 293–299.

Kreinin, L. et al. PV module power gain due to bifacial design. Preliminary experimental and simulation data. 35th IEEE Photovolt. Spec. Conf., 2010, 2171–2175.

Ohtsuka, H.; Sakamoto, M.; Tsutsui, K.; Yazawa, Y. Bifacial silicon solar cells with 21•3% front efficiency and 19•8% rear efficiency. Progress in Photovoltaics: Research and Applications. 2000, 8, 385–390.

Jorgensen, G.J.; Terwilliger, K.M.; Kempe, M.D.; McMahon, T.J. Testing of packaging materials for improved PV module reliability. IEEE Phot Spec Conf, 2005, 499-502.

Cellere, G.; Falcon, T. et al. International Technology Roadmap for Photovoltaic (ITRPV), 2016.

Pelaez, S. A.; Deline, C.; MacAlpine, S. M.; Marion, B.; Stein, J. S.; Kostuk, R. K. Comparison of Bifacial Solar Irradiance Model Predictions With Field Validation. IEEE Journal of Photovoltaics, 2019, 9, 82-88.

Bhaduri, S.; Kottantharayil, A. Mitigation of Soiling by Vertical Mounting of Bifacial Modules. IEEE Journal of Photovoltaics, 2019, 9, 240-244.

Lin, J.; Ho, K.; Haga, S. W.; Chen, W. Symmetrical and Crossed Double-Sided Passivation Emitter and Surface Field Solar Cells for Bifacial Applications. IEEE Journal of the Electron Devices Society, 2019, 7, 174-179.

Guerrero-Lemus, R.; Vega, R.; Kim, T.; Kimm, A.; Shephard, L. E. Bifacial solar photovoltaics – A technology review. Renewable and Sustainable Energy Reviews, 2016, vol. 60, pp. 1533–1549.

Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; Yamamoto, K. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, Mar. 2017, vol. 2, p. 17032.

Lin, J. T.; Lee, C. T.; Chen, W. H.; Haga, S. W.; Hu, Y. Y.; Ho, K. Y. Double-Sided Symmetrical and Crossed Emitter Crystalline Silicon Solar Cells With Heterojunctions for Bifacial Applications. IEEE Journal of Photovoltaics, 2018, 8, 441-447.

Campa, A.; Valla, A.; Brecl, K.; Smole, F.; Muñoz, D.; Topic, M. Multiscale Modeling and Back Contact Design of Bifacial Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 89-95.

Taguchi, M. et al. 24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer. IEEE Journal of Photovoltaics, 2014, 4, 96-99.

Fertig, F.; Nold, S. ; Wöhrle, N. ; Greulich, J.; Hädrich, I.; Krauß, K. ; Mittag, M. ; Biro, D. ; Rein, S. ; Preu, R. Economic feasibility of bifacial silicon solar cells. Prog. Photovolt: Res. Appl., 2016, 24: 800– 817. doi: 10.1002/pip.2730.

Laudani, A.; Riganti Fulginei, F.; Salvini, A.; Parisi, A.; Pernice, R.; Ricco Galluzzo, F.; Cino, A. C.; Busacca, A. C. One diode circuital model of light soaking phenomena in Dye-Sensitized Solar Cells. Optik, 2018, 156, 311-317.

Parisi, A.; Pernice, R.; Adamo, G.; Miceli, R.; Cino, A. C. Anomalous performance enhancement effects in Ruthenium-based Dye Sensitized Solar Cells. ICCEP 2017, 2017, 8004811, 174-178.

Duran, C. “Bifacial Solar Cells: High Efficiency Design, Characterization, Modules and Applicationsâ€, Konstanzer Online-Publikations-System (KOPS), 2012 URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-205361.

Ibrahim, A. LBIC Measurements Scan as a Diagnostic Tool for Silicon Solar Cell. J. Basic. Appl. Sci. Res., 2011, 1, 215-221.

Sites J. et al. Physical Characterization of Thin-film Solar Cells. Prog. Photovolt: Res. Appl., 2004, 12, 177-217.

Photoresponse Mapping of Photovoltaic Cells, Application note 40, Newport.

Martin, J.; Fernandez-Lorenzo, C.; Poce-Fatou, J. A.; Alcantara, R. A Versatile Computer-controlled Highresolution LBIC System. Prog. Photovolt: Res. Appl., 2004, 12, 283-295.

Adamo, G.; Parisi, A.; Pernice, R.; Ricco Galluzzo, F.; Di Noia, L.; Cino, A. C. Laser Beam Induced Current measurements on Dye Sensitized Solar Cells and thin film CIG(S,SE)2modules. ICCEP 2017, 2017, 169-173.

Parisi, A.; Pernice, R.; Andò, A.; Adamo, G.; Cino, A. C.; Busacca, A. C. Experimental characterization of Ruthenium-based Dye Sensitized Solar Cells and study of light-soaking effect impact on performance. 2016 AEIT International Annual Conference, 2016, 1-5.

Ibrahim, A. LBIC Measurements Scan as a Diagnostic Tool for Silicon Solar Cell. J. Basic. Appl. Sci. Res., 2011, 215-221.

BokaliÄ, M.; Jankovec, M.; TopiÄ, M. Solar Cell Efficiency Mapping by LBIC. 45th Int. Conf. on Microelectr., Dev. and Mat., 2009, 269-273.

Bezuidenhout, L. J.; van Dyk, E. E.; Vorster, F. J.; du Plessis, M. C. On the Characterisation of solar cells using light beam induced current measurements. In Nelson Mandela Metropolitan University, Centre for Energy Research, Student Symposium, 2012.

Finn, J. R.; Hansen, B. R.; Granata, J. E. Multiple junction cell characterization using the LBIC method: early results, issues, and pathways to improvement. In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC), June 2009, 000564-000569.

Acciari, G.; Adamo, G.; Ala, G.; Busacca, A.; Caruso, M.; Giglia, G.; Imburgia, A.; Livreri, P.; Miceli, R.; Parisi, A.; Pellitteri, F.; Pernice, R.; Romano, P.; Schettino, G.; Viola, F. Experimental Investigation on the Performances of Innovative PV Vertical Structures. Photonics 2019, 6, 86.




DOI (PDF): https://doi.org/10.20508/ijrer.v9i4.10029.g7805

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4