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Abstract-In most of the countries around the world, solar photovoltaic power plants have a cost-competitive structure for 

providing energy access and for increasing electricity production. However, solar photovoltaic power integration requires the 

handling of power quality and stability problems due to its non-controllable and intermittent characteristics. At this point, the 

need for reliable solar irradiance and solar power forecasting is emerged for the optimal modeling and scheduling of solar 

photovoltaic power plants. For this purpose, this study conducts an exhaustive and up-to-date review of solar irradiance and 

solar power forecasting methods used in the literature. Although there are a plenty of review papers in the literature, 

differently, we have created the extensive and comparative literature tables considering very-short term, short-term, medium-

term and long-term forecasting periods in this study. Furthermore, we have examined each paper in terms of its input data, 

forecasting interval, forecasting model, forecasting accuracy and forecasting results. As a result of overall assessments, this 

study provides complete and considerable information about the current status and future prospects in solar irradiance and solar 

power forecasting. 

Keywords: Solar photovoltaic power plants, solar irradiance forecasting, solar power forecasting, current status, future 

prospects. 

 

Nomenclature 

IMPMAE  Improvement percentage of MAE 

IMPRMSE Improvement percentage of RMSE 

MABE  Mean absolute bias error 

MAD  Mean absolute deviation 

MAE  Mean absolute error 

MAPE  Mean absolute percentage error 

MBE  Mean bias error 

MdAPE  Median absolute percentage error 

MRE  Mean relative error 

MSE  Mean squared error 

 

NMAE  Normalized mean absolute error 

NRMSE Normalized root mean square error 

R  Correlation coefficient 

R2   The coefficient of determination 

rMAE  Relative mean absolute error 

RMSE  Root mean square error 

rRMSE  Relative root mean square error 

QS  Quantile score 

SDAE  Standard deviation of AE 

SDAPE  Standard deviation of APE 
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1. Introduction 

Renewable energy meets the energy needs of countries 

with domestic clean energy resources by reducing the 

dependence on foreign countries. It also provides the use of 

sustainable energy by diversifying energy resources and 

reducing greenhouse gas emissions [1, 2]. Solar, wind, 

geothermal, biomass and hydroelectric energy sources are the 

main types of renewable energy. According to the 

Renewables Global Status Report [3], the global new 

investment in renewable power and fuels exceeded USD 260 

billion in 2016 and the global renewable power generating 

capacity has seen almost 2,017 GW in total by the end of 

2016. Especially, the production capacities based on the 

energy types have been reached to 1,096 GW for 

hydropower, 487 GW for wind power, 307.8 GW for solar 

power, 112 GW for bio-power and 13.5 GW for geothermal 

power. Among them, solar photovoltaic was observed as the 

world’s leading renewable energy source of additional power 

generating capacity in 2016. As shown in Figure 1, there has 

been a tremendous growth in the global capacity and annual 

additions of solar photovoltaic energy for the last 10 years. 

These improvements have led to analyse the huge amount of 

recorded data in solar photovoltaic energy systems by means 

of the knowledge discovery process in databases. 

 

Figure 1. The global capacity and annual additions of solar 

photovoltaic energy [3] 

The knowledge discovery process is based on sorting, 

searching, summarizing and analysing data in large-scale 

databases [4, 5]. It contains the steps of data cleaning and 

integration, data selection and transformation, data mining, 

pattern evaluation and presentation, as depicted in Figure 2. 

Each step performs its own task as follows [6, 7]:  The data 

in a database are taken to the data warehouse after data 

cleaning and integration step, the task-relevant data is 

constructed by data selection and transformation step, the 

patterns are uncovered by means of data mining step and 

finally, useful and meaningful patterns are converted to the 

knowledge after pattern evaluation and presentation step. 

Particularly, the inconsistent data is removed in the data 

cleaning phase and multiple data sources are combined in the 

data integration phase. The data related to the analysis task is 

retrieved in the data selection phase and the convenient data 

form is performed in the data transformation phase. The 

hidden patterns are searched and the meaningful information 

is uncovered in the data mining phase. All of interesting 

patterns are identified in the pattern evaluation phase and the 

knowledge mined is presented to users with data 

visualization techniques in the knowledge presentation 

phase. 
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Figure 2.  The knowledge discovery process in large-scale 

databases 

Data mining is one of the most important stages of 

knowledge discovery process in large-scale databases. 

Intelligent systems, artificial intelligence, machine learning, 

statistics, etc. are among the disciplines that constitute data 

mining [8]. Data mining methods are mostly categorized as 

predictive and descriptive models [9]. Predictive mining 

aims to develop a model by using the data whose results are 

known and to predict the results of data whose results are 

unknown by utilizing the model developed. On the other 

hand, descriptive mining aims to reveal the relationships in 

the existing data that can help to make decisions. 

Classification and regression analysis takes part in the 

predictive models, while cluster analysis, association rules 

and sequential patterns are involved in the descriptive models 

[10]. Bayesian networks, artificial neural networks, support 

vector machines, decision trees, k-nearest neighbor 

algorithm, multiple linear and logistic regression models, etc. 

can be employed for the classification and regression 

analysis. Agglomerative hierarchical clustering, k-means 

partitional clustering, Dbscan density-based clustering and 

Sting grid-based clustering methods can be used for the 

cluster analysis. In addition, Apriori algorithm has the usage 

priority in order to obtain the association rules. 

Many different applications of data mining methods 

have been made for solar energy systems, such as electrical 

efficiency estimation of photovoltaic unit [11], quantifying 

rooftop photovoltaic energy [12], solar irradiance and solar 

power forecasting [13, 14], levelized cost prediction [15], 

reference voltage estimation [16], duty cycle determination 
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of power converter [17], oscillation characteristic modeling 

[18], etc. Among these application areas, particularly, solar 

irradiance and solar power forecasting is commonly and 

predominantly needed for the optimal management of energy 

flow occurring in solar systems. In this respect, the main 

objective of this study is to make a comprehensive literature 

review of forecasting methods of solar irradiance and solar 

power. In addition, the major contributions of this study are 

to provide the highly summarized content of the 

corresponding literature with the easy to understand tables 

constructed, to evaluate the current challenges to be solved 

for solar irradiance and solar power forecasting, and to make 

the crucial proposals need to be considered in future 

forecasting studies. As a result, the literature review 

conducted represents a key study for ensuring the literature 

consistency in solar irradiance and solar power forecasting. 

2. Solar Forecasting 

Solar forecasting mostly deals with the prediction of 

solar irradiance and solar power production. Four different 

time horizons and their purposes used for solar forecasting 

can be summarized as follows [19, 20]: Very short-term 

period contains the predictions up to 15 minutes for power 

balance/quality, reserve capacity planning and load 

following. Short-term period covers the predictions from 15 

minutes to 1 hour for reserve capacity planning, load 

following and market bidding. Medium-term period contains 

the predictions from 1 hour to 1 day and long-term period 

covers the predictions beyond 1 day. Both of them are 

utilized for market bidding and base-load planning. In the 

following sub-sections, we investigate solar irradiance and 

solar power forecasting considering these time horizons.  

2.1. Solar Irradiance Forecasting 

We examine the solar irradiance forecasting methods in 

the literature based on very short-term, short-term, medium-

term and long-term periods. In each forecasting period, we 

also focus on input data, forecasting interval, forecasting 

models, forecasting accuracies and forecasting results of the 

related study. The content analyses of all studies examined in 

the scope of solar irradiance forecasting are presented in 

Tables 1 to 4, elaborately. For instance, in [43], fuzzy logic, 

artificial neural network and fuzzy-neural network models 

used solar radiation, sky conditions and temperature data in 

order to forecast the solar irradiance parameter at 1-h time 

intervals. The mean absolute percentage errors of these 

models were achieved as 13.87%, 10.85% and 6.03%, 

respectively. So, in terms of the forecasting accuracy, fuzzy-

neural network model outperformed artificial neural network 

model, while artificial neural network model surpassed fuzzy 

logic model. 

As a result of overall examination in solar irradiance 

forecasting, the following meaningful findings and useful 

proposals are uncovered in this study: 

 Solar irradiance, air temperature and sunshine duration 

are the mostly-used input parameters. Atmospheric 

pressure, relative humidity and wind speed parameters 

follow them. In addition, coordinates, sky image, cloud 

cover, precipitation, wind direction, zenith angle, month 

and day numbers are used, rarely.  

 The effects of these parameters on solar irradiance 

forecasting should be examined and the most 

influential ones should be utilized for optimizing the 

forecasting accuracy. 

 Artificial neural networks have a wide range of 

applications in solar irradiance forecasting. Multilayer 

perceptron, support vector machines, support vector 

regression and k-means algorithm follow it. In addition, 

autoregressive modeling, self-organizing maps, extreme 

learning machine, k-nearest neighbor algorithm and 

firefly algorithm are also employed for the same purpose.  

 The forecasting performance of these methods should 

be compared in detail and according to the results that 

will be achieved, novel hybrid forecasting methods 

should be constructed. 

 The time horizons usually focus on short-term and 

medium-term periods. Particularly, 1-h time intervals in 

short-term period and 1-day time intervals in medium-

term period are considered in the forecasting methods.  

 More studies containing very-short term and long-

term periods should be conducted in order to meet the 

other requirements based on solar irradiance 

forecasting. 

 Root mean square error is the most preferred metric in 

order to measure the accuracy of solar irradiance 

forecasting. The coefficient of determination, mean 

absolute percentage error and mean absolute error also 

have the usage priorities after it.  

 All of these accuracy metrics should be computed in 

the future forecasting studies in order to ensure the 

literature consistency. 

 Artificial neural networks generally provide better 

forecasting results than autoregressive integrated moving 

average, autoregressive and linear regression models. On 

the other hand, they are generally outperformed by 

support vector machine and support vector regression 

models. 

2.2. Solar Power Forecasting 

Similar to the solar irradiance forecasting, we review the 

solar power forecasting methods in the literature based on 

very short-term, short-term, medium-term and long-term 

periods. In each forecasting period, we also concentrate on 

input data, forecasting interval, forecasting models, 

forecasting accuracies and forecasting results of the relevant 

study. The content analyses of all studies reviewed in the 

scope of solar power forecasting are presented in Tables 5 to 

8 in detail. For instance, in [82], solar irradiance, solar cell 

temperature and solar power output data were used in 

adaptive feed-forward neural network, dynamic recurrent 

neural network and radial basis function models for the 

purpose of forecasting the solar power parameter at 1-h time 

intervals. The correlation coefficients of these models were 
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accomplished as 0.998, 0.981 and 0.991, respectively. Thus, 

in terms of the forecasting performance, adaptive feed-

forward neural network model surpassed radial basis 

function model, while radial basis function model 

outperformed dynamic recurrent neural network model. 

As a result of overall review in solar power forecasting, 

the following beneficial patterns and favourable 

recommendations are revealed in this study: 

 Solar power, solar irradiance and air temperature are the 

mostly-employed input parameters. Relative humidity 

and wind speed parameters pursue them. In addition, sky 

image, cloud cover, precipitation, sunshine duration and 

air pressure parameters are employed in a seldom 

manner.  

 The effects of these parameters on solar power 

forecasting should be analyzed and the most powerful 

ones should be utilized for improving the forecasting 

accuracy. 

 Artificial neural networks have a widespread application 

area in solar power forecasting. Autoregressive integrated 

moving average modeling, support vector regression and 

support vector machines pursue it. In addition, ensemble 

modeling, autoregressive modeling with exogenous 

inputs, radial basis functions, recurrent neural networks 

and multilayer perceptron are also used for the similar 

purpose.  

 The forecasting achievement of these methods should 

be compared to each other in depth and in this 

context, new mixed forecasting structures should be 

built. 

 The time horizons generally concentrate on very-short 

term, short-term and medium-term periods. Especially, 

15-min time intervals in very-short term period, 1-h time 

intervals in short-term period and 1-day time intervals in 

medium-term period are regarded in the forecasting 

methods. 

 More studies including long-term periods should be 

dealt in order to fulfill the other necessities based on 

solar power forecasting. 

 Mean absolute error is the most utilized metric in order to 

evaluate the performance of solar power forecasting. 

Mean absolute percentage error, root mean square error 

and normalized root mean square error also have the 

precedence of usage after it.  

 All of these performance metrics should be calculated 

in the further forecasting studies in order to contribute 

the literature consistency. 

 Artificial neural networks in comparison to 

autoregressive integrated moving average model and 

seasonal autoregressive integrated moving average model 

in comparison to support vector machines lead to better 

forecasting results. Despite that, artificial neural networks 

are usually surpassed by support vector regression 

models. 

2.3. Common Assessments for Solar Irradiance and Solar 

Power Forecasting 

In the previous sub-sections, solar irradiance forecasting 

and solar power forecasting are evaluated independently 

from each other. As a result of considering both forecasting 

reviews, the following invaluable outcomes are mined in this 

study: 

 There are the studies that do not specify forecasting 

intervals and forecasting errors. The forecasting intervals 

should be indicated to enable the time horizon-based 

evaluations and the forecasting errors should be presented 

to enable the accuracy-based comparisons. 

 There are the limited applications of optimization 

methods such as genetic algorithm, evolutionary 

algorithm, particle swarm optimization, Levenberg-

Marquardt algorithm, artificial bee colony algorithm, 

glowworm swarm optimization, coral reefs optimization, 

etc. In addition to these optimization methods, other new 

ones such as ant lion, grey wolf, dragonfly, moth-flame, 

whale, rooted tree etc. optimizers should be adapted to 

the forecasting processes. 

 In addition to RMSE, R2, MAPE and MAE in solar 

irradiance forecasting and MAE, MAPE, RMSE and 

NRMSE in solar power forecasting, their improvement 

percentages with respect to the persistence method should 

be given for proper benchmark tests. Since, the 

persistence method is the most-widely employed 

reference model in both literatures. 

 Each study in the corresponding literatures has its own 

input data, time interval, accuracy metric and forecasting 

model. In addition to this case, the usage of persistence 

method that is the only way to make constructive and 

effective comparisons is relatively limited in the 

literature. For these reasons, in this phase, it is not 

possible to make the exact evaluations about the accuracy 

performance of forecasting models. However, it can be 

observed from the literature that hybrid solar predictors 

frequently provide lower forecasting errors than single 

solar predictors. 

 Lastly, the multi-seasonal data can be used in order to 

uncover whether the forecasting methods are affected by 

the seasonal changes. In addition, a common standard 

database around the world can also be created in order to 

enable researchers to share their experiences in this field. 

In addition to the solar irradiance and solar power 

forecasting studies in the literature, it should be noted that 

there are many other studies focusing on the various control 

strategies for the performance optimization of solar energy 

systems [95-103]. 
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Table 1. Solar irradiance forecasting methods based on very short-term period 
 

Ref. Input data Forecasting models  Intervals Forecasting accuracies Forecasting results 

[21] Meteorological data Artificial neural network (ANN) N/A R=0.886 ANN 

[22] 

Daylight hours, temperature, 

clear-sky and extraterrestrial 

solar radiation, actual and 

maximum sunshine duration 

Polynomial kernels-based support vector 

regression (PK-SVR) 
N/A 

R= 0.889, RMSE=3.3 MJ/m2 

PK-SVR > RBF-SVR 
Radial basis functions-based support vector 

regression (RBF-SVR) 
R=0.887, RMSE=3.4 MJ/m2 

[23] Weather data Multilayer perceptron (MLP) 1-min N/A MLP 

[24] 

Global horizontal, diffuse 

horizontal and direct normal 

irradiance 

Support vector regression 

1-min 

rRMSE=6.70% 

AR > PM > SVR Autoregressive modeling (AR) rRMSE=3.62% 

Persistence model (PM) rRMSE=5.32% 

[25] Solar irradiance, sky image 
Support vector machines-based artificial 

neural network (SVM-ANN) 

5-min MAE=35.7 W/m2, MBE=1.20 W/m2 

SVM-ANN 10-min MAE=44.2 W/m2, MBE=2.11 W/m2 

15-min MAE=51.8 W/m2, MBE=4 W/m2 

[26] 
Direct irradiance, diffuse 

irradiance, sky images 

k-nearest neighbor ensemble model (k-

NNE) 

5-min MBE=-2.6 W/m2, RMSE=78.1 W/m2 

k-NNE 10-min MBE=-2.5 W/m2, RMSE=98.40 W/m2 

15-min MBE=-2.3 W/m2, RMSE=109.3 W/m2 

[27] Solar radiation Multilayer perceptron 10-min R=0.89 MLP 

[28] Global horizontal irradiance 
Optimized k-nearest neighbor model 

15-min 
MAE=18.70 W/m2, IMPRMSE=10.7% Opt. ANN > Opt. k-

NN Optimized artificial neural network MAE=17.60 W/m2, IMPRMSE=12% 

 

Table 2. Solar irradiance forecasting methods based on short-term period 
 

Ref. Input data Forecasting models  Intervals Forecasting accuracies Forecasting results 

[25] Solar irradiance, sky image 
Support vector machines-based artificial 

neural network 
20-min MAE=56.8 W/m2, MBE=5.30 W/m2 SVM-ANN 

[26] 
Direct irradiance, diffuse 

irradiance, sky images 
k-nearest neighbor ensemble model 20-min MBE=-2 W/m2, RMSE=134.5 W/m2 k-NNE 

[27] Solar radiation Multilayer perceptron 20-min R=0.81 MLP 

[28] Global horizontal irradiance 
Optimized k-nearest neighbor model 

45-min 
MAE=20.90 W/m2, IMPRMSE=11.4% Opt. k-NN > Opt. 

ANN Optimized artificial neural network MAE=20.40 W/m2, IMPRMSE=10.5% 

[29] Global horizontal irradiation 
Nonparametric bootstrapping method 

(NBS) 
1-h N/A NBS 

[30] 
System configuration, cloud 

cover,  season 

Adaptive neuro-fuzzy inference system 

(ANFIS) 
1-h N/A ANFIS 

[31] Solar radiation 

Autoregressive integrated moving average-

based time delay neural network (ARIMA-

TDNN) 

1-h N/A ARIMA-TDNN 

[32] 

Solar radiation, sunshine 

duration, wind speed and 

direction, pressure, humidity, 

temperature, precipitation 

Generalized  radial  basis functions (GRBF) 1-h N/A GRBF 

[33] 
Global horizontal, diffuse and 

beam solar irradiation 
Artificial neural network 1-h R2=0.90, RMSE=21.54% ANN 

[34] Solar radiation Linear prediction filters (LPF) 1-h 
MBE=17.44 W/m2, RMSE=68.41 

W/m2 
LPF 

[35] 
Global horizontal solar 

radiation 

k-means-based nonlinear autoregressive 

neural network (NARNN) 
1-h RMSE=60.24 W/m2, NRMSE=0.19 k-means-NARNN 

[36] Global solar radiation 
Coupled autoregressive-based dynamical 

system model (CAR-DS) 
1-h MdAPE=7.53%, NRMSE=0.16 CAR-DS 

[37] 

Extraterrestrial radiation, air 

temperature, wind speed, wind 

direction 

A soft computing framework using 

clustering, time series and multilayer 

perceptron (SCF) 

1-h MAE=23.61 W/m2, NMAE=2.80 SCF 

[38] Global horizontal irradiance Artificial neural network 1-h MBE=3.9 W/m2, RMSE=77.9 W/m2 ANN 

[39] 
Temperature, wind speed, 

cloud cover, precipitation 

k-means algorithm-based Multilayer 

perceptron (k-means-MLP) 
1-h IMPMAE=5.90% k-means-MLP 

[40] Numerical weather data 
Grouping genetic algorithm-based extreme 

learning machine (GA-ELM) 
1-h R2=0.86, RMSE=111.76 W/m2 GA-ELM 

[41] Solar radiation 
Mycielski model 

1-h 
R=0.88, R2=0.81, RMSE=13.90 W/m2 Mycielski-Markov > 

Mycielski Mycielski-Markov hybrid model R=0.84, R2=0.83, RMSE=13.49 W/m2 
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[42] 
Sun  radiation, temperature, 

weather conditions 

Multivariate linear regression (MVLR) 
1-h 

R2=0.92 
ANN > MVLR 

Artificial neural network R2=0.99 

[43] 
Solar radiation, sky conditions, 

temperature data 

Fuzzy logic (FL) 

1-h 

MAPE=13.87% 

FNN > ANN > FL Artificial neural network MAPE=10.85% 

Fuzzy-neural network model (FNN) MAPE=6.03% 

[44] Global horizontal irradiation 

Autoregressive modeling 

1-h 

NRMSE=0.272 

KF > ANN > AR Artificial neural network  NRMSE=0.271 

Kalman filters (KF) NRMSE=0.181 

[45] 

Zenith angle, azimuth angle, 

extraterrestrial radiation, 

diffuse solar radiation, direct 

solar radiation, global solar 

radiation 

Self-organizing map-based extreme 

learning machine (SOM-ELM) 

1-h 

MAE=9.98 W/m2, MAPE=4.60 % 

SOM-ELM > BPNN > 

ARIMA Back-propagation neural network (BPNN) MAE=12.89 W/m2, MAPE=6.18 % 

Autoregressive integrated moving average MAE=14.90 W/m2, MAPE=7.70 % 

[46] 

Wind speed, relative humidity, 

sky cover, atmospheric 

transmissivity  

Least-square support vector machine (LS-

SVM) 
1-h 

MAE=33.70 W/m2 

LS-SVM > RBF > AR 
Radial basis functions MAE=43 W/m2 

Autoregressive modeling MAE=62 W/m2 

[47] 

Month number, day number, 

number of hours per day, 

ambient temperature, humidity, 

sunshine ratio 

Artificial neural network 

1-h 

MAPE=17.15%, RMSE=95.91 W/m2 

FF-RF > RF > FF-

ANN > ANN 

Firefly algorithm-based artificial neural 

network (FF-ANN) 
MAPE=13%, RMSE=85.12 W/m2 

Random forests (RF) MAPE=9.78%, RMSE=74.45 W/m2 

Firefly algorithm-based random forests (FF-

RF) 
MAPE=6.38%, RMSE=68.83 W/m2 

[48] Solar time series data 

k-means algorithm 

1-h 

RMSE= 58.65 W/m2, IMPRMSE=1% 

Trans. k-means > 

SOM >k-means++  > 

k-means 

k-means++ algorithm RMSE=45.27 W/m2, IMPRMSE=23% 

Self-organizing maps RMSE=37.21 W/m2, IMPRMSE=37% 

Transformation-based k-means algorithm 

(Trans. k-means) 
RMSE=20.56 W/m2, IMPRMSE=65% 

[49] 

Temperature, air pressure, 

relative humidity, solar zenith 

angle, wind direction, wind 

speed, precipitation 

Support vector machines 

1-h 

MAPE=28.53%, RMSE=41.28 W/m2 

GSO-LASSO > 

LASSO > SVM 

Least absolute shrinkage and selection 

operator (LASSO) 
MAPE=20.39%, RMSE=44.87 W/m2 

Glowworm swarm optimization-based least 

absolute shrinkage and selection-operator 

(GSO-LASSO) 

MAPE=13.24%, RMSE=28.05W/m2 

[50] Global horizontal irradiance  

Empirical mode decomposition-based linear 

autoregressive and  non-linear neural 

network (EMD-LANNN) 

1-h 

rMAE=8.82%, rRMSE=11.16% 

WD-LANNN > 

EEMD-LANNN > 

EMD-LANNN 

Ensemble empirical mode deco.-based 

linear autoregressive and  non-linear neural 

network (EEMD-LANNN) 

rMAE=5.18%, rRMSE=6.19% 

Wavelet decomposition-based linear 

autoregressive and  non-linear neural 

network (WD-LANNN) 

rMAE=2.76%, rRMSE=3.80% 

[51] 

Global horizontal solar 

irradiance, atmospheric 

pressure, humidity, air 

temperature 

Decision trees and artificial neural networks 

(DT-ANN) 

1-h 

rMAE=21.10%, RMSE=161 W/m2 

SVM-SVR > SVM-

ANN > DT-SVR > 

DT-ANN 

Decision trees and support vector 

regression (DT-SVR) 
rMAE=19.30%, RMSE=163 W/m2 

Support vector machines and artificial 

neural networks (SVM-ANN) 
rMAE=18.50%, RMSE=150 W/m2 

Support vector machines and support vector 

regression (SVM-SVR) 
rMAE=16.70%, RMSE=147 W/m2 

[52] 
Ground data, satellite-derived 

data, weather forecast data 

Artificial neural network model with 

ground data (ANN-GD) 

1-h 

RMSE=110.6 W/m2, IMPRMSE=7.1%  

ANN-GSWD > ANN-

GSD > ANN-GWD > 

ANN-GD 

Artificial neural network model with 

ground and satellite data (ANN-GSD) 
RMSE=105.3 W/m2, IMPRMSE=11.4% 

Artificial neural network model with 

ground and weather forecast data (ANN-

GWD) 

RMSE=110.3 W/m2, IMPRMSE=7.4 % 

Artificial neural network model with 

ground, satellite and weather forecast data 

(ANN-GSWD) 

RMSE=104.7 W/m2, IMPRMSE=11.9% 
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Table 3. Solar irradiance forecasting methods based on medium-term period 
 

Ref. Input data Forecasting models  Intervals Forecasting accuracies Forecasting results 

[28] Global horizontal irradiance 
Optimized k-nearest neighbor model 90-min MAE=22.60 W/m2, IMPRMSE=15.8% 

Opt. k-NN > Opt. ANN 
Optimized artificial neural network 90-min MAE=22.80 W/m2, IMPRMSE=14.1% 

[38] Global horizontal irradiance Artificial neural network 

90-min MBE=8.6 W/m2, RMSE=93.5 W/m2 

ANN 
2-h 

MBE=14.5 W/m2, RMSE=107.4 

W/m2 

[53] 
Solar radiation, temperature, 

wind speed, wind direction 

k-means algorithm-based Bayesian neural 

networks (k-means-BNN) 

2-h 

RMSE=85.72 W/m2, NRMSE=0.533 

GTSOM-BNN > k-

means-BNN > SOM-

BNN 

Self-organizing maps-based Bayesian 

neural networks (SOM-BNN) 
RMSE=90.58 W/m2, NRMSE=0.586 

Game theoretic self-organizing maps-based 

Bayesian neural networks (GTSOM-BNN) 
RMSE=82.76W/m2, NRMSE=0.521 

[39] 
Temperature, wind speed, 

cloud cover, precipitation 

k-means algorithm-based multilayer 

perceptron 

2-h IMPMAE=21.10% 
k-means-MLP 

3-h IMPMAE=29.30% 

[52] Numerical weather data 
Grouping genetic algorithm-based extreme 

learning machine 

2-h R2=0.71, RMSE=165.86 W/m2 
GA-ELM 

3-h R2=0.59, RMSE=200.36 W/m2 

[40] 
Ground data, satellite-derived 

data, weather forecast data 

Artificial neural network with ground data 

6-h 

RMSE=162.8 W/m2, IMPRMSE=28% 

ANN-GSWD > ANN-

GWD > ANN-GSD > 

ANN-GD 

Artificial neural network with ground and 

satellite data 
RMSE=157.03 W/m2, IMPRMSE=31% 

Artificial neural network with ground and 

weather forecast data 
RMSE=148.3 W/m2,  IMPRMSE= 34% 

Artificial neural network with ground, 

satellite and weather forecast data 
RMSE=147.8 W/m2,  IMPRMSE=35% 

[54] Meteorological data Gaussian process regression (GPR) 1-day RMSE=3.14 kJ/m2 GPR 

[55] Global horizontal irradiance Artificial neural network 1-day MSE=16.45 W/m2 ANN 

[56] 
Temperature, pressure, wind 

speed, sunlight, radiation 
Artificial neural network 1-day R2=0.98 ANN 

[57] 

Altitude, latitude, longitude, 

clearness index, temperature, 

humidity, pressure 

Artificial neural network 1-day R2=0.99, MAPE=2.56% ANN 

[58] 

Altitude, latitude, rainfall, 

number of rainy days, day 

length, solar radiation 

Artificial neural network 1-day R2=0.99, MAPE=1.67% ANN 

[59] 
Particulate matters, wind speed, 

temperature, humidity 
Multilayer perceptron 1-day 

R2=0.95, MAPE=0.05%, RMSE=0.14 

J/cm2 
MLP 

[60] 

Extraterrestrial radiation, 

temperature, humidity, wind 

velocity, precipitation 

Artificial neural network 1-day 
MBE=357 W/m2, MAPE=1.36%, 

RMSE=1589 W/m2 
ANN 

[61] 
Time, temperature, humidity, 

solar irradiance 
Triple exponential smoothing model (TES) 1-day MAE=46.08 W/m2, MAPE=12.22 % TES 

[62] 

Precipitation, radiative flux, air 

pressure, humidity, cloud 

cover, temperature, radiation 

Least-square regression 

1-day 

N/A 

N/A 
Feed-forward neural network N/A 

[63] Solar energy 
Multilayer perceptron 

1-day 
MAPE=6.56% 

N/A 
Knowledge-based neural network N/A 

[64] Average daily solar radiation 

Gradient descent algorithm-based artificial 

neural network (GD-ANN) 
1-day 

MAPE=86.30% 

LM-ANN > GD-ANN 
Levenberg-Marquardt algorithm-based 

artificial neural network (LM-ANN) 
MAPE=85.60% 

[65] 

Total ozone amount, total 

precipitable water, cloud 

amount, solar irradiance 

Classical extreme learning machine (C-ELM) 

1-day 

RMSE=0.00136 W/m2 

CRO-ELM > C-ELM Coral reefs optimization-based extreme 

learning machine (CRO-ELM) 
RMSE=0.00125 W/m2 

[66] 
Temperature, relative humidity, 

wind speed, sunshine duration 

Multilayer perceptron 

1-day 

R2=0.82, MABE=360.77 W/m2 

OBS-MLP > MLP Optimal brain surgeon algorithm-based 

multilayer perceptron (OBS-MLP) 
R2=0.83, MABE=356.81 W/m2 

[67] 

Maximum and minimum air 

temperature, sunshine duration, 

global solar radiation 

Genetic programming (GP) 

1-day 

R2=0.76, MAPE=6.46% 

FF-SVM > GP > ANN 
Artificial neural network R2=0.74, MAPE=6.98% 

Firefly algorithm-based support vector 

machines (FF-SVM) 
R2=0.79, MAPE=6.22% 
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Table 4. Solar irradiance forecasting methods based on long-term period 
 

Ref. Input data Forecasting models  Intervals Forecasting accuracies Forecasting results 

[68] 

Altitude, sunshine hour, 

maximum and minimum 

temperature 

Artificial neural network 1-month RMSE=4.12 W/m2 ANN 

[69] 
Satellite-derived land surface 

temperature 

Autoregressive integrated moving average 

1-month 

rMAE=7.36%, rRMSE=9.60% 
ANN > MLR > 

ARIMA 
Multiple linear regression (MLR) rMAE=9.04%, rRMSE=10.23% 

Artificial neural network rMAE=4.17%, rRMSE=5.85% 

[70] 

Mean relative humidity, mean 

wind speed, mean station level 

pressure, mean air temperature, 

year, month, latitude, 

longitude, altitude 

Gradient descent algorithm-based artificial 

neural network 

1-month 

R=0.45, MAE=6.15 W/m2, 

RMSE=7.79 W/m2 

LM-ANN > SCG-ANN 

> RBBNN > GD-ANN 

Levenberg-Marquardt algorithm-based 

artificial neural network 

R=0.95, MAE=0.78 W/m2, 

RMSE=1.04 W/m2 

Scaled conjugate gradient algorithm-based 

artificial neural network (SCG-ANN) 

R=0.89, MAE=1.30 W/m2, 

RMSE=1.71 W/m2 

Resilient back propagation algorithm-based 

artificial neural network (RBBNN) 

R=0.71, MAE=2.45 W/m2, 

RMSE=3.10 W/m2 

 

Table 5. Solar power forecasting methods based on very short-term period 
 

Ref. Input data Forecasting models  Intervals Forecasting accuracies Forecasting results 

[71] Solar power output 

Seasonal autoregressive integrated 

moving average 

N/A 

NRMSE=0.095 

Seasonal ARIMA-

SVM > Seasonal 

ARIMA > SVM 

Support vector machines NRMSE=0.096 

Seasonal autoregressive integrated 

moving average-based support vector 

machines 

NRMSE=0.094 

[72] 
Power output, temperature, solar 

radiation, relative humidity 

Artificial bee colony-based multilayer 

perceptron (ABC-MLP) 
5-min R2=0.947, MAPE=3.70% ABC-MLP 

[73] Solar electricity generation Artificial neural network 5-min RMSE=35.43 W ANN 

[74] Solar power, sky image 

Artificial neural network 

5-min RMSE=35.50 kW, IMPRMSE=15.10% 

ANN > ANN-ARIMA 

>ANN-kNN 

10-min RMSE=41.20 kW, IMPRMSE=21.80% 

15-min RMSE=42.50 kW, IMPRMSE=26.20% 

Artificial neural network-based auto- 

regressive moving average 

5-min RMSE=36.40 kW, IMPRMSE=12.90% 

10-min RMSE=44.10 kW, IMPRMSE=16.30% 

15-min RMSE=46.40 kW, IMPRMSE=19.40% 

Artificial neural network-based k-

nearest neighbor algorithm 

5-min RMSE=37.10 kW, IMPRMSE=11.20% 

10-min RMSE=45.30 kW, IMPRMSE=14% 

15-min RMSE=46.40 kW, IMPRMSE=19.40% 

[75] 
Solar power, solar irradiance, 

temperature, humidity, wind speed 

Neural network ensemble model 

(NNE) 10-min 
MAE=57.56 kW, MRE=5% 

NNE > SVR 

Support vector regression MAE=64.47 kW, MRE=5.60% 

[76] 
Solar power, wind speed, pressure, 

irradiance, temperature, humidity 

Brain project-based evolutionary 

computing (BPEC) 
15-min 

MBE=-0.0020, RMSE=0.068 kW, 

NRMSE=0.18 
BPEC 

[77] 
Solar power, solar radiation, 

ambient temperature 

Autoregressive with exogenous inputs- 

artificial neural network (ARE-ANN) 
15-min NRMSE=0.09 ARE-ANN 

 
Table 6. Solar power forecasting methods based on short-term period 

 

Ref. Input data Forecasting models  Intervals Forecasting accuracies Forecasting results 

[75] 
Solar power, solar irradiance, 

temperature, humidity, wind speed 

Neural network ensemble model 
20-min MAE=75.56 kW, MRE=6.57% 

NNE > SVR 
30-min MAE=86.42 kW, MRE=7.51% 

Support vector regression 
20-min MAE=82.05 kW, MRE=7.13% 

30-min MAE=94.13 kW, MRE=8.18% 

[73] Solar electricity generation Artificial neural network 35-min RMSE=54.11 W ANN 

[76] 
Solar power, wind speed, pressure, 

irradiance, temperature, humidity 

Brain project-based evolutionary 

computing 
45-min 

MBE=-0.0023, RMSE=0.098 kW, 

NRMSE=0.27 
BPEC 

[78] 
PV power patterns, solar irradiance, 

ambient temperature 
Bio-inspired clustering algorithm (BIC) 

30-min R=0.988, MAE=9.03 kW 
BIC 

1-h R=0.984, MAE=11.31 kW 

[79] Total precipitation, net solar Fourier transformation (FT) 1-h N/A FT 
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radiation, surface thermal radiation, 

total surface solar radiation 

[80] 
Solar power, aerosol index data, 

temperature, humidity, wind speed  
Back propagation neural network 1-h MAPE=7.04% BPNN 

[81] Solar power 

Autoregressive model 

1-h 

IMPRMSE=27% 

AR-EI > AR Autoregressive model with exogenous 

inputs (AR-EI) 
IMPRMSE=35% 

[82] 
Solar irradiance, solar cell 

temperature, power output 

Adaptive feed-forward neural network 

(AFFNN) 

1-h 

R=0.998, MAPE=2.30% 

AFNN > RBF > 

DRNN 
Dynamic recurrent neural network 

(DRNN) 
R=0.981, MAPE=5.98% 

Radial basis functions R=0.991, MAPE=4.67% 

[83] Solar power output 

Autoregressive integrated moving 

average  

1-h 

R2=0.92, MAE=72 kW, IMPRMSE=1% 

GA-ANN > ANN > 

ARIMA 
Artificial neural network R2=0.95, MAE=53 kW, IMPRMSE=17% 

Genetic algorithm-based artificial 

neural network (GA-ANN) 
R2=0.96, MAE=42 kW, IMPRMSE=32% 

 

Table 7. Solar power forecasting methods based on medium-term period 
 

Ref. Input data Forecasting models  Intervals Forecasting accuracies Forecasting results 

[78] 
PV power patterns, solar irradiance, 

ambient temperature 
Bio-inspired clustering algorithm 2-h R=0.978, MAE=14.67 kW BIC 

[83] Solar power output 

Autoregressive integrated moving 

average  

2-h 

R2=0.86, MAE=102 kW, 

IMPRMSE=10% 
GA-ANN > ANN > 

ARIMA 
Artificial neural network R2=0.86, MAE=89 kW, IMPRMSE=11% 

Genetic algorithm-based artificial 

neural network 
R2=0.93, MAE=62 kW, IMPRMSE=35% 

[84] 

Horizontal irradiance, temperature, 

total cloud cover, azimuth angle, 

solar elevation angle 

Ensemble variance deficit model 

3-h 

N/A 

N/A 
Ensemble model output statistics N/A 

[85] 
Solar irradiance, air temperature, 

cloud amount 

Simple linear model (SLM) 

3-h 

MAE=0.47 kW, RMSE=0.64 kW 

TSFM > SLM > GAM Takagi-Sugeno fuzzy model (TSFM) MAE=0.44 kW, RMSE=0.62 kW 

Generalized additive model (GAM) MAE=0.64 kW, RMSE=0.64 kW 

[77] 
Solar power, solar radiation, 

ambient temperature 

Autoregressive with exogenous inputs- 

artificial neural network 
1-day NRMSE=0.19 ARE-ANN 

[86] 

Historical power production, 

temperature, solar radiation 

intensity 

Particle swarm optimization-based 

back-propagation neural network 

(PSO-BPNN) 

1-day MAE=57.30 kW, MAPE=12.48% PSO-BPNN 

[87] 

Air pressure, sunshine duration, 

cloud, wind speed, wind direction, 

relative humidity, air temperature, 

solar irradiance, solar power 

k-means algorithm-based radial basis 

functions 
1-day MAPE=10.80% k-means-RBF 

[88] Weather data 
Fuzzy logic-based recurrent neural 

networks (FL-RNN) 
1-day MAE=0.22 kW FL-RNN 

[89] 

Produced power, radiation, 

precipitation, wind speed, 

insolation time, humidity, dew 

temperature 

Artificial neural network  

1-day 

SDAE=37.24 kW, SDAPE=10.24% 

MLR > ANN > SVM 

> k-NN 

Support vector machines SDAE=48.43 kW, SDAPE=10.34% 

k-nearest neighbor algorithm SDAE=52.99 kW, SDAPE=15.39% 

Multivariate linear regression SDAE=47.38 kW, SDAPE=9.11% 

[90] Solar power output 

Multivariate adaptive regression 

splines (MARS) 

1-day 

MAD=78.70 W, MAPE=28.80% 

MARS > SVR > ANN 

> CART > k-NN 

Artificial neural network MAD=87.80 W, MAPE=30% 

k-nearest neighbor algorithm  MAD=82.20 W, MAPE=34.60% 

Classification and regression trees 

(CART) 
MAD=95.70 W, MAPE=32.60% 

Support vector regression MAD=77.30 W, MAPE=29.50% 

[91] 

Photovoltaic power output, 

temperature, precipitation 

probability, wind direction, wind 

speed, ultraviolet radiation index 

Learning vector quantization, support 

vector regression and self-organizing 

map hybrid model (SOM-LVQ-SVR) 
1-day 

MRE=3.29%, RMSE=350 W 
SOM-LVQ-SVR > 

SVR > ANN 
Support vector regression MRE=4.01%, RMSE=402.5 W 

Artificial neural network MRE=5.41%, RMSE=529.2 W 
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Table 8. Solar power forecasting methods based on long-term period 
 

Ref. Input data Forecasting models  Intervals Forecasting accuracies Forecasting results 

[92] Solar radiation, air temperature Support vector machines 
5-day MdAPE=7.60%, NRMSE=0.18  

(average of both periods) 
SVM 

10-day 

[93] Numerical weather data Gradient boosting machine (GBM) 1-month QS=0.01211 GBM 

[94] Solar power output 

Evolutionary seasonal decomposition 

least-square support vector regression 

(ESD-LSSVM) 

1-month 

MAPE=7.84%, RMSE=0.16 GWh 

ESD-LSSVM > 

Seasonal ARIMA > 

LSSVM > ARIMA > 

GRNN 

Least-square support vector regression MAPE=14.37%, RMSE=0.21 GWh 

Autoregressive integrated moving 

average 
MAPE=22.70%, RMSE=0.43 GWh 

Seasonal autoregressive integrated 

moving average  
MAPE=11.14%, RMSE=0.19 GWh 

Generalized regression neural network 

(GRNN) 
MAPE=36.02%, RMSE=0.62 GWh 

 

3. Conclusions 

This study elaborates the solar irradiance and solar 

power forecasting methods used in the literature. As well, 

their input data, forecasting intervals, forecasting models, 

forecasting accuracies and forecasting results are discussed 

in detail. The following widely-existing properties are 

revealed for solar irradiance forecasting: solar irradiance, air 

temperature and sunshine duration parameters as the input 

data, 1-h and 1-day time scales as the forecasting intervals, 

artificial neural networks as the forecasting models, root 

mean square errors as the accuracy metrics, support vector 

machine and support vector regression models as the 

optimum forecasting performance. In addition, the 

commonly-encountered features below are uncovered for 

solar power forecasting: solar power, solar irradiance and air 

temperature parameters as the input data, 15-min, 1-h and 1-

day time scales as the forecasting intervals, artificial neural 

networks as the forecasting models, mean absolute errors as 

the accuracy metrics and support vector regression models as 

the optimum forecasting performance. 

In addition to these identifications, the necessities for 

analyzing the effects of input parameters, constructing novel 

hybrid methods, making more studies in very-short term and 

long-term periods and computing all mentioned accuracy 

metrics are emphasized one by one for both solar irradiance 

and solar power forecasting. Particularly, in future studies, 

the adaption of optimization methods into the forecasting 

processes, the computation of improvement percentages with 

respect to the persistence reference model, the usage of 

multi-seasonal input data and the construction of a global 

standard database will contribute to the studies made in these 

fields. 
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