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Abstract-In wind energy systems, wind speed variability and wind power fluctuation negatively affect the power system 

reliability. To overcome this challenge, actual wind turbine power curves serve as one of the important tools for condition 

monitoring and troubleshooting, easier forecast of wind power production and ensuring the stable operation of wind turbines. 

Motivated by this, this study compares the goodness-of-fit results of polynomial, Fourier, Gaussian and sum of sines parametric 

models in wind turbine power curve fitting. According to the accuracy results obtained, 9th-degree polynomial, 8-term Fourier, 

4-term Gaussian and 5-term sum of sines models show good parametric modeling performance in their own curve fitting 

category. Among them, 8-term Fourier model stands out by achieving the least power curve fitting errors. In addition, traditional 

benchmark models have been outdone in terms of the goodness-of-fit statistics. 
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1. Introduction 

Wind energy industry continues to grow and stands out as 

an important actor among renewable energies [1, 2]. In recent 

years, a large number of wind turbines have been installed in 

wind power plants around the world, and their operating and 

maintenance costs have also been high [3-5]. To monitor the 

performance of wind turbines and improve the utilization of 

wind energy, it is needed to generate precise practical power 

curves from average wind speeds and corresponding power 

outputs [6-8]. To address this, many research studies on the 

parametric modeling of wind turbine power curves have been 

conducted in the literature. 

An explicit analytical equation was utilized for the 

generalization of different power curves [9]. A maximum 

likelihood-based Weibull distribution function was built for 

power curve assessment [10]. Least squares-based Weibull 

and linear distribution functions were applied for power curve 

monitoring [11]. Cubic, quadratic and linear power curves 

were improved using Weibull distribution function [12]. 

Approximate cubic, cubic, quadratic and exponential power 

curves were constructed for the region above the cut-in speed 

and below the nominal speed [13]. An interpolation formula 

based on a set of linear equations was also employed for the 

similar region in the power curve [14]. An optimized power 

curve was created to improve the efficiency issues in the low-

wind-speed areas [15]. 

QR decomposition and least squares methods were used to 

calculate the design coefficients of 8th-degree polynomial 

power curve [16]. Piecewise functions were fitted on the bins 

of the power curve with 6th-, 5th- and 4th-degree polynomials 

[17]. A piecewise polynomial function with the 3rd-degree was 

also employed for more plausible power curves [18]. 

Multivariate polynomial power curves were tested under 

wake-free and wake-affected conditions [19, 20]. A data-

driven error correction-based logistic function was developed 

to reflect the trend of wind power [21]. Compared to Hill and 

Weibull functions, a 3-parameter logistic function was found 

to be more stable in power curve modeling [22]. A firefly 

algorithm-based 4-parameter logistic function was developed 

for power curve characterization [23]. 3- and 5-parameter 

logistic functions were recommended to model the power 

curves of various wind turbines [24].  
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Particle swarm optimization, genetic algorithm, 

evolutionary programming and differential evolution were 

used to obtain the design coefficients of 4- and 5-parameter 

logistic power curves [25]. Deterministic process-based 3- and 

4-parameter logistic and simplified deterministic process-

based 4-parameter logistic power curve models were analysed 

to reformulate the parameters of logistic functions [26]. Least 

squares-based 7th-degree polynomial and 4-parameter logistic 

functions were compared for a smoother power curve [27]. 9th- 

and 5th-degree polynomial, logistic and double exponential 

functions were compared in terms of power curve modeling 

performance [28]. Grey wolf optimizer and backtracking 

search algorithm were hybridized, and combined with a loss 

function based on the error characteristic to construct modified 

hyperbolic tangent and logistic power curves [29]. 

Additionally, many other applications for parametric 

functions are available in [30-37]. 

From this literature summary, it is clear that the selection 

of parametric model is very essential in wind turbine power 

curve modeling. In this regard, the main objective of this study 

is to make a comparative analysis on the parametric modeling 

performance of polynomial, Fourier, Gaussian and sum of 

sines curve fitting models. As a result of the detailed 

comparisons, many useful goodness-of-fit assessments have 

been carried out in terms of the coefficient of determination, 

root mean squared error and sum of squared errors. 

2. Power Curve Fitting 

In the power curve modeling performed in this study, the 

fitting coefficients of sum of sines (𝐹1), Gaussian (𝐹2), Fourier 

(𝐹3) and polynomial (𝐹4) parametric models are determined 

utilizing the least squares method. The mentioned parametric 

models are formulated as below [38-41]. In Equation (1), 𝑛, 𝑐, 

𝑏 and 𝑎 are the number of terms, phase constant, frequency 

and amplitude, respectively. In Equation (2), 𝑛, 𝑐, 𝑏, and 𝑎 

represent the number of peaks, peak width, centroid and 

amplitude, respectively. In Equation (3), 𝑛, 𝑤 and 𝑎0 denote 

the number of terms, fundamental frequency and constant 

term, respectively. In Equation (4), 𝑛 and 𝑛 + 1 indicate the 

polynomial degree and polynomial order, respectively. In 

these equations, x is normalized by mean 5.48 and standard 

deviation 2.373. The mentioned parametric models are 

implemented in the curve fitting toolbox of Matlab R2016a. 

The coefficient of determination (R2), root mean squared error 

(RMSE) and sum of squared errors (SSE) are employed for 

assessing the curve fitting accuracy. In addition, the wind 

turbine power curve dataset utilized in this study was taken 

from [42]. It included actual measurements recorded at 10-min 

intervals for 1 year. After data cleaning, the final dataset 

resulted in 47274 data points for wind speed and wind power 

parameters. 

𝐹1 = ∑ 𝑎𝑖𝑠𝑖𝑛 (𝑏𝑖𝑥 + 𝑐𝑖)
𝑛

𝑖=1
, 1 ≤ 𝑛 ≤ 8 (1) 

𝐹2 = ∑ 𝑎𝑖𝑒
[−((𝑥−𝑏𝑖) 𝑐𝑖⁄ )2]

𝑛

𝑖=1
, 1 ≤ 𝑛 ≤ 8 (2) 

𝐹3 = 𝑎0 + ∑ 𝑎𝑖 𝑐𝑜𝑠(𝑖𝑤𝑥) + 𝑏𝑖𝑠𝑖𝑛 (𝑖𝑤𝑥)
𝑛

𝑖=1
, 1 ≤ 𝑛 ≤ 8 (3) 

𝐹4 = ∑ 𝑝𝑖𝑥
𝑛+1−𝑖

𝑛+1

𝑖=1
, 1 ≤ 𝑛 ≤ 9 (4) 

2.1. Polynomial Fitting Results 

The accuracy results of polynomial curve fitting models 

are listed in Table 1. According to this table, 9th-degree 

polynomial model succeeds the most accurate power curve 

fitting with SSE of 1.0852×108, RMSE of 47.9181 kW and R2 

of 0.986727. 8th-degree polynomial model follows it with SSE 

of 1.0854×108, RMSE of 47.9203 kW and R2 of 0.986725. In 

addition, it outdoes 7th-degree to 2nd-degree polynomial 

models in terms of accuracy results, respectively. 

Nevertheless, 1st-degree polynomial model produces the most 

erroneous power curve fitting with SSE of 1.4854×109, RMSE 

of 177.2619 kW and R2 of 0.818332. The fitting coefficients 

of 9th-degree polynomial model are computed as p1=-

0.004121, p2 =0.1452, p3=-1.072, p4=1.202, p5=11.57, p6=-

31.47, p7=-48.13, p8=221.3, p9=434.5 and p10=208.2. The 

wind turbine power curve fitted by 9th-degree polynomial 

model is given in Fig. 1. It should be noted that 3rd-, 2nd- and 

1st-degree polynomials are also called cubic, quadratic and 

linear regression models in benchmark tests. 

Table 1. Accuracy results of polynomial curve fitting models 

Parametric Models 
Curve Fitting Accuracy 

SSE RMSE R2 

1st-degree polynomial model 1.4854×109 177.2619 0.818332 

2nd-degree polynomial model 4.3008×108 95.3845 0.947399 

3rd-degree polynomial model 1.9541×108 64.2953 0.976100 

4th-degree polynomial model 1.4754×108 55.8689 0.981955 

5th-degree polynomial model 1.1296×108 48.8850 0.986185 

6th-degree polynomial model 1.1242×108 48.7684 0.986251 

7th-degree polynomial model 1.1092×108 48.4419 0.986435 

8th-degree polynomial model 1.0854×108 47.9203 0.986725 

9th-degree polynomial model 1.0852×108 47.9181 0.986727 
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Fig. 1. The wind turbine power curve fitted by 9th-degree polynomial model. 

2.2. Fourier Fitting Results 

The accuracy results of Fourier curve fitting models are 

presented in Table 2. As observed from this table, 8-term 

Fourier model accomplishes the most correct power curve 

fitting with SSE of 1.0617×108, RMSE of 47.4001 kW and R2 

of 0.987014. It is pursued by 7-term Fourier model with SSE 

of 1.0624×108, RMSE of 47.4139 kW and R2 of 0.987006. 

Moreover, on the basis of accuracy results, 6-term to 2-term 

Fourier models are surpassed, respectively. However, 1-term 

Fourier model results in the most inconsistent power curve 

fitting with SSE of 1.5932×108, RMSE of 58.0549 kW and R2 

of 0.980515. The fitting coefficients of 8-term Fourier model 

are found as a0=940.2, a1=-776.5, b1=807.3, a2=173.8, b2=-

66.7, a3=-157.4, b3=-80.95, a4=28.62, b4=108, a5=16.57, b5=-

55.51, a6=-32.34, b6=16.24, a7=12.38, b7=3.45, a8=-3.575, 

b8=-8.332 and w=0.6445. The wind turbine power curve fitted 

by 8-term Fourier model is illustrated in Fig. 2. 

2.3. Gaussian Fitting Results 

The accuracy results of Gaussian curve fitting models are 

summarized in Table 3. Based on this table, 4-term Gaussian 

model achieves the best power curve fitting with SSE of 

1.0625×108, RMSE of 47.4144 kW and R2 of 0.987005. 6-

term Gaussian model follows it with SSE of 1.0651×108, 

RMSE of 47.4743 kW and R2 of 0.986974. In addition, it 

outperforms 5-term, 3-term, 7-term, 2-term and 8-term 

Gaussian models in terms of accuracy results, respectively. On 

the other hand, 1-term Gaussian model brings about the worst 

power curve fitting with SSE of 2.1269×108, RMSE of 

67.0780 kW and R2 of 0.973986. The fitting coefficients of 4-

term Gaussian model are calculated as a1=1762, b1=6.09, 

c1=3.041, a2=-118.9, b2=-0.2436, c2=1.187, a3=1261, 

b3=2.722, c3=2.22, a4=51.66, b4=0.8176 and c4=0.508. The 

wind turbine power curve fitted by 4-term Gaussian model is 

depicted in Fig. 3. 

Table 2. Accuracy results of Fourier curve fitting models 

Parametric Models 
Curve Fitting Accuracy 

SSE RMSE R2 

1-term Fourier model 1.5932×108 58.0549 0.980515 

2-term Fourier model 1.2553×108 51.5340 0.984647 

3-term Fourier model 1.0940×108 48.1102 0.986620 

4-term Fourier model 1.0747×108 47.6854 0.986855 

5-term Fourier model 1.0690×108 47.5594 0.986925  

6-term Fourier model 1.0632×108 47.4313 0.986996 

7-term Fourier model 1.0624×108 47.4139 0.987006 

8-term Fourier model 1.0617×108 47.4001 0.987014 
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Fig. 2. The wind turbine power curve fitted by 8-term Fourier model. 

Table 3. Accuracy results of Gaussian curve fitting models 

Parametric Models 
Curve Fitting Accuracy 

SSE RMSE R2 

1-term Gaussian model 2.1269×108 67.0780 0.973986 

2-term Gaussian model 1.0928×108 48.0820 0.986635 

3-term Gaussian model 1.0673×108 47.5192 0.986947 

4-term Gaussian model 1.0625×108 47.4144 0.987005 

5-term Gaussian model 1.0671×108 47.5176 0.986949 

6-term Gaussian model 1.0651×108 47.4743 0.986974 

7-term Gaussian model 1.0699×108 47.5845 0.986914 

8-term Gaussian model 1.1940×108 50.2689 0.985397 
 

 

Fig. 3. The wind turbine power curve fitted by 4-term Gaussian model. 
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2.4. Sum of Sines Fitting Results 

The accuracy results of sum of sines curve fitting models 

are provided in Table 4. As noticed from this table, 5-term sum 

of sines model realizes the smallest power curve fitting errors 

with SSE of 1.0679×108, RMSE of 47.5352 kW and R2 of 

0.986940. It is pursued by 6-term sum of sines model with 

SSE of 1.0680×108, RMSE of 47.5380 kW and R2 of 

0.986939. Moreover, on the basis of accuracy results, 4-term, 

8-term, 7-term, 3-term and 2-term sum of sines models are 

surpassed, respectively. However, 1-term sum of sines model 

causes the biggest power curve fitting errors with SSE of 

1.4855×109, RMSE of 177.2703 kW and R2 of 0.818318. The 

fitting coefficients of 5-term sum of sines model are obtained 

as a1=8131, b1=0.3573, c1=1.997, a2=8198, b2=0.4039, c2=-

1.055, a3=63.99, b3=1.841, c3=-2.087, a4=29.09, b4=2.624, 

c4=-0.2813, a5=6.359, b5= 4.814 and c5=-2.449. The wind 

turbine power curve fitted by 5-term sum of sines model is 

shown in Fig. 4. 

3. Conclusions 

This paper introduces the detailed comparison of 

polynomial, Fourier, Gaussian and sum of sines models in 

terms of the coefficient of determination, root mean squared 

error and sum of squared errors for wind turbine power curve 

modeling. When considering the best power curve model in 

each curve fitting category, 8-term Fourier model provides 

lower SSE and RMSE values and higher R2 value than 4-term 

Gaussian, 5-term sum of sines and 9th-degree polynomial 

models, respectively. On the other hand, when taking into 

account the worst power curve model in each curve fitting 

category, 1-term sum of sines model produces higher SSE and 

RMSE values and lower R2 value than 1st-degree polynomial, 

1-term Gaussian and 1-term Fourier models, respectively. 

Additionally, in case of making the comparison against 

traditional benchmark models, it is seen that 8-term Fourier 

model also performs better than logarithmic, exponential, 

cubic, quadratic and linear regression models. While the SSE, 

RMSE and R2 values of  

Table 4. Accuracy results of sum of sines curve fitting models 

Parametric Models 
Curve Fitting Accuracy 

SSE RMSE R2 

1-term sum of sines model 1.4855×109 177.2703 0.818318 

2-term sum of sines model 1.1482×108 49.2853 0.985957 

3-term sum of sines model 1.0770×108 47.7347 0.986828 

4-term sum of sines model 1.0681×108 47.5383 0.986937 

5-term sum of sines model 1.0679×108 47.5352 0.986940 

6-term sum of sines model 1.0680×108 47.5380 0.986939 

7-term sum of sines model 1.0702×108 47.5899 0.986911 

8-term sum of sines model 1.0701×108 47.5905 0.986912 
 

 

Fig. 4. The wind turbine power curve fitted by 5-term sum of sines model. 
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logarithmic regression model are computed as 4.6681×109, 

316.5292 kW and 0.423240, respectively, the ones for 

exponential regression model are found as 1.5924×109, 

183.5346 kW and 0.805247, respectively. 

In future studies, for further analysis, the design 

coefficients of the most accurate power curve fitting models 

identified in this study can be approximated utilizing the 

recently-developed metaheuristic optimization algorithms in 

the literature. 
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