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Abstract- A matrix converter by design is a bidirectional switch based ac-ac converter featuring high efficiency, longer 

lifespan and high power density. This paper proposes a positive controlled matrix converter as a variable multiphase input-

output converter. Based on the characteristic of Positive PWM control technique, the generalized matrix converter can be 

operated as a variable multiphase topology or as any of the four categorizes of power electronic converter. The switching 

sequence of Positive PWM control technique ensures that open circuit and short-circuit of current and voltage sources are 

eliminated hence continuous current flow is provided at the source and load of the matrix converter. Also, the generated output 

waveforms are balanced and high quality even if the input waveforms are hugely distorted and unbalanced. Theoretical 

analysis of the input-output phase variation of the proposed matrix converter is provided and PSCAD software based 

simulation of a single-phase to single-phase and a three-phase to two-phase positive controlled matrix converters are provided. 

Keywords Bidirectional switch, matrix converter, positive control, three-phase, two phase. 

 

1. Introduction 

AC-AC converters such as matrix converter are 

extensively utilized in industrial applications such as 

renewable energy integration, variable speed/motor drives, 

UPFCs (unified power flow controllers), installation of 

electric furnace and grid interfacing [1-2]. The matrix 

converter was introduced 1980 and is also known as a 

generalized transformer. Matrix converters are principally 

designed to provide frequency and amplitude (buck/boost) 

control for ac-ac voltage conditioning, they require less 

passive components [3-4]. Some advantages of matrix 

converter are sinusoidal input/output waveform, bidirectional 

power flow, variable input power factor, direct power 

conversion, high efficiency, higher controllability and fast 

response, variable input/output phase and no or minimum 

energy storage device [9-10]. The major disadvantage of the 

matrix converter is the higher number of semiconductor 

devices required. Matrix converter is categorized into DMC 

(direct matrix converter) and IDMC (indirect matrix 

converter) [7]. Detailed classification of the matrix converter 

is shown by Fig. 1. There are four main categories of the 

matrix converter i.e. hybrid, direct, three-phase and indirect 

matrix converters, the direct topology grouped into two 

categories i.e. conventional and full-bridge matrix 

converters.  

Several control switching commutations have been 

proposed for the control of the matrix converter. The AV 

method with a voltage transfer ratio (input/output) of 50% 

was presented in 1981 by Alesina and Venturini [8]. This 

methodology was improved by the 3rd harmonic injection 

technique (optimum AV technique) with an improved 

voltage transfer ratio of 86.6% which is still a major 

constraint on the efficiency of the matrix converter [9]. 

Scalar control technique utilizes a contrasting procedure 

however; the results are similar to AV technique [10]. By 

using a fictitious dc-link, the control technique presented by 

[11] increases the voltage transfer ratio to 105.3%.  With 

respect to PWM based control techniques for matrix 

converters, several of such techniques have been reported in 

[12-19] where input-side unity power-factor is maintained 

but output voltage control is provided. Two of such 

commonly used techniques are SVM (space vector 

modulation) and CBM (carrier-based modulation). 
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Fig. 1. Classification of matrix converter. 

  

In the CBM method, the input/source power-factor is 

regulated by controlling the carrier slope and applying offset 

voltage [15]. SVM technique synthesizes the zero state 

vectors and adjacent two vectors to produce the required 

reference [16-17]. Other control techniques are DTC (direct 

torque control) [18-19], predictive control [20], PTC 

(predictive torque control) [21-22], closed-loop control and 

HB (hysteresis band) control [23-24]. 

This paper proposes a positive controlled matrix 

converter as a variable multiphase input-output converter 

which is suitable for application in grid integration of wind 

energy, UPFCs (unified power-flow controllers), direct DVR 

compensations, induction cookers, microgrids etc. The 

emergence of PET (power electronic transformers) provides 

another avenue where the proposed converter can be used for 

voltage amplitude and frequency regulation and also for 

voltage phase regulation [25-29].  

2. System Configuration  

The conventional m*n matrix converter topology is 

illustrated by Fig. 2; from this structure, various matrix 

converter topologies with equal or varying input-output 

phases can be designed. Fig. 3 to Fig. 7 shows various 

topologies derived from the conventional structure of Fig. 2. 

A three-phase to two-phase structure is depicted by Fig. 3. A 

three-phase to single-phase structure is illustrated by Fig. 4. 

A single-phase to three-phase structure is illustrated by Fig. 

6. A single-phase to single-phase structure is illustrated by 

Fig. 5. A three-phase to three-phase structure is illustrated by 

Fig. 7. The commonly used three-phase to three-phase 9-

switch matrix converter is illustrated by Fig. 7. 
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Fig. 2. Conventional m*n matrix converter. 

The nine switches which are bidirectional with respect to 

current flow are derived from any of the four topology 

configurations i.e. common emitter, common collector, 

reverse/antiparallel and diode configurations [30-32] 

illustrated by Fig. 8. The nine bidirectional switches of Fig. 

7. constitutes a 3*3 matrix which provides a logical 

switching states of twenty-seven.  
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Fig. 3. Three-phase to two-phase matrix converter. 
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Fig. 4. Three-phase to single-phase matrix converter. 
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Fig. 5. Single-phase to single-phase matrix converter. 
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Equation (1) expresses the three-phase voltage input and 

Equation (2) and (3) provide the relationship between the 

three-phase input and the three-phase output of the converter 

with respect to the voltage and current accordingly. S in 

equation (2) represent the switch matrix and ST in equation 

(3) represent the transpose of S. Simplifying equation (2) 

yields equation (3). 
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Fig. 6. Single-phase to three-phase matrix converter. 
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Fig. 7. Three-phase to three-phase matrix converter. 

 

(a) Common Emitter (b) Common Collector 

(c) Diode Bridge  (d) Reverse/Antiparallel  

 

Fig. 8. Bidirectional switch configuration. 
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3. Positive Control Technique 

Positive control technique is employed in controlling the 

proposed matrix converter. In this work, a single-phase to 

single-phase and a three-phase to two-phase PWM positive 

controlled matrix converters are proposed. In the positive 

controlled technique, the switching sequence is developed 

into a matrix based on the number of switches in the specific 

matrix converter under investigation. Using Fig. 6, the 

developed matrix is shown by equation (4) and the total 

switching period TTS is expressed by equation (5) where tx 

and ty represent the active switches during positive and 

negative switching cycles accordingly. Diagonally switching 

determines the active switches during tx and ty intervals. In tx 

time interval, switches S4 and S1 are gated on and during ty 

time interval, switches S3 and S2 are gated on. In other to 

derive equal diagonal switching, the first column of equation 

(4) has to be repeated and its expressed by equation (6). The 

resulting diagonal switching is expressed equation (7) [33 – 

35]. 
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Based on equations (5) and (6), the average output 

voltage vo and the parameters of switching P (duty cycle) are 

expressed by:  

1
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Fig. 9. Resistance-inductance (RL) load. 
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From the RL load equivalent circuit of Fig. 9, the 

average output voltage vo and average output current io are 

computed by equations (10) and (11) accordingly. The input 

and output currents are related by equation (12). 

o R L
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o o
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di
v Ri L

dt
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                                                       (10) 

sin( )o om o oi I t                                                     (11) 

1 2( )i oi i P P                                                               (12) 

4. Simulation Results  

Simulation result of the proposed single-phase to single-

phase and three-phase to two-phase PWM positive controlled 

matrix converters are presented in this section. Based on the 

above control technique, the matrix converter functions as a 

buck converter with respect to voltage and a boost converter 

with respect to frequency. Firstly, simulation results are 

produced for the single-phase to single matrix converter of 

Fig. 6 using the simulation parameters of Table 1. 

Table 1. Simulation parameters 

Parameter Value 

Input voltage Vi 200V 

frequency fo 50Hz 

Switching frequency fs 5kHz 

Resistance R 20Ω 

Inductance L 0.04H 
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Fig. 10. Source voltage waveform. 
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Fig. 11. Load voltage waveform. 
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Fig. 12. Source current waveform. 
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Fig. 13. Load current waveform. 
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Fig. 14. Total harmonic distortion of load current. 
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Fig. 15. Total harmonic distortion of load voltage. 

Simulation waveforms of the proposed PWM positive 

controlled single-phase to single-phase matrix converter is 

are shown by Fig.10 to Fig.17. The source voltage and 

current are represented by Fig.10 and Fig.12 having peak 

values of 200V and 3A accordingly. The corresponding 

output voltage and current are illustrated by Fig.11 and 

Fig.13 with peak magnitudes of 190V and 2.75A 

accordingly. The output voltage and current THD are 

expressed by Fig.15 and Fig.14 respectively. The FFT of the 

output current and voltage are given by Fig.16 and Fig.17. 
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Fig. 16. FFT of load current. 
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Fig. 17. FFT of load voltage. 
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Fig. 18. Source voltage waveform. 

 

Table 2. Simulation parameters 

Parameter Value 

Input voltage Vi 220V 

frequency fo 50Hz 

Switching frequency fs 5kHz 

Resistance R 18Ω 

Inductance L 0.055H 

 

Lastly, simulation results of the proposed three-phase to 

two-phase PWM positive controlled matrix converter 

represented by Fig.4 is provided in this section. Parameters 

of the simulation are expressed by Table 2. A low-pass filter 

is connected at the input section of the matrix converter just 

after the source voltage. Fig.18 shows the three-phase input 

voltage waveforms with maximum amplitude of 220V. 

Fig.19 and Fig.20 shows the load voltage waveforms of 

phase A and B accordingly with an average maximum 

amplitude of 210V. The three-phase current waveform before 

the low-pass filter is depicted by Fig.21 and the filtered 

current waveforms are shown by Fig.22. The load current 

waveform of phase A and B are shown by Fig.23.  
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Fig. 19. Phase A load voltage waveform. 
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Fig. 20. Phase B load voltage waveform. 
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Fig. 21. Source current waveform (before low-pass filter). 
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Fig. 22. Source current waveform (after low-pass filter). 
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Fig. 23. Load current waveform. 

5. Conclusion 

This work proposed the application of a PWM positive 

controlled matrix converter as a variable multiphase input-

output converter. The generalised structure of the matrix 

converter is analysed in this work and various input-output 

multiphase variations are provided. Simulation results of a 

single-phase to single-phase and a three-phase to a two-phase 

matrix converters are provided. Some inherent advantages of 

the positive control method are continuous input-output 

current flow due to the elimination of short-circuit and open-

circuit of the converter, quality output waveforms and buck 

voltage and boost frequency characteristics.  
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