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Abstract- In wind farms, a doubly fed induction generator (DFIG) has proven to be the most successful wind power generator 

in recent years. DFIG features various speeds of operation and autonomous management of reactive and active powers. 

Nevertheless, the extreme DFIG sensibility to voltage dips brings a lot of defiance in terms of complying with grid code 

regulations set by the electrical utility operators. Now, these grid regulations impose tougher constraints, particularly for low-

voltage ride-through (LVRT). Indeed, this disruption brought on by the stator circuit affects the generating system. Initially, it 

was necessary to turn off generators when a breakdown occurred.  A disconnect could cause the entire system to fail. Recent 

grid codes require that in addition to meeting operating irregularities, the generators also remain connected. To increase the 

LVRT capacity for the Egyptian Electrical Grid linked to the Al-Zafarana Wind Park. This article introduces the design and 

modelling of a protection scheme employing a series resistor. The protection scheme ensures the safety of energy converters, 

rotor circuits, and dc-link capacitors while limiting rotor currents, dc-link voltages, and torque changes. The effectiveness of the 

protective scheme ware also assessed for asymmetrical and symmetrical fault situations. Matlab/Simulink is used to produce the 

simulation findings. According to the simulation findings, the protection scheme demonstrated an effective solution for 

improving the LVRT feature, of the Egyptian Electrical Grid linked to the Al-Zafarana Wind Park. 

Keywords Wind power, al-zafarana wind park, DFIG, LVRT, series resistor.    

1. Introduction 

Electric utilities struggle to supply the consumer demand 

for electricity because of the continuous rise in electrical 

energy consumption. To fulfil the rising need for energy, 

renewable energy sources (RESs) emerged and have advanced 

significantly at present [1, 2]. Since wind power is a 

sustainable energy source that is now promptly expanding, 

and has the lowest operational costs, it has taken the lead 

among these sources. 

By 2022, the strategic objectives of the new & renewable 

energy authority (NREA) of Egypt, which were approved in 

2008; aim to generate 20% of the total electricity from 

renewable energy sources, with 12% coming from wind 

energy systems (WES) [3, 4]. The DFIG is now most often 

employed in wind farms. Given its unique characteristics like 

various speeds, real-reactive power management, and 

consistent frequency. As well as the use of lower-rated, lighter 

power converters with fewer losses and less mechanical 

pressure on the gearbox [5–8]. 

The DFIG turbines are more vulnerable to network 

outages. Due to their direct connection with the network and 

energy converters. Even though the fault is located far from 

the wind turbine (WT), it may still result in disastrous failures 

that impair system performance, such as blackouts and 

production losses. Due to this fast voltage drop, the rotor may 

overheat or the DC-link capacitor may overvoltage. Without 

protection, this causes the power converters to degrade and 

may even result in their destruction. Additionally, the turbine 

over the speed that results from them is present. The turbine 
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loses its ability to function normally, which causes it to be 

unplugged from the grid [9–11]. This aspect of DFIG led to 

the emergence of the LVRT capability advantage. 

The capacity of a WT to maintain grid connectivity and, 

under specific conditions, prop it up when the grid encounters 

a fault, is known as LVRT capability [12, 13]. However, 

according to network code requirements, the WTs must be 

linked to the network in voltage dip situations up to a certain 

point and thus prop up the network. Effective LVRT schemes 

are crucial to propping up the grid system by controlling actual 

and reactive power and safeguarding energy converters in the 

system. 

Many studies and research have addressed the issue of 

enhancing the ability of LVRT to DFIG in Refs. [14–19], the 

authors introduced the use of additional circuits. It is possible 

to install a crowbar circuit, a DC chopper, a series dynamic 

brake resistor (SDBR), a superconducting fault current limiter 

(SFCL), and other circuits. These methods include reducing 

torque fluctuations, overcurrent, and dc-link voltage. The 

much more typical method is to use a crowbar. This technique 

completely drains the grid of the reactive power required 

during a fault, which is very undesirable. Additionally, the 

rotor and controls are no longer attached, rendering the device 

useless. Due to the shortcomings of the crowbar circuit. 

Additionally, many articles on LVRT approaches have 

appeared in Refs. [20–22], and LVRT approaches based on 

power-injecting devices are suggested. In these methods, grid 

voltages are regulated or optimized using devices like static 

synchronous series compensators (SSSC), thyristor-controlled 

series compensators (TCSC), static synchronous 

compensators (STATCOM), and dynamic voltage restorers 

(DVR). The ability of these devices to push or adjust active 

and reactive powers will consequently improve the LVRT 

capabilities of wind generators. Utilizing these devices 

increases the system's size, additionally; they are not 

particularly efficient in terms of cost. 

Control structure-based solutions are more successful in 

resolving these problems. It has been mentioned in Refs. [23–

26], that a combined approach of virtual resistance and 

demagnetizing control was employed. These structures allow 

for the development of a variety of system controllers to reject 

changes in different parameters, including electromagnetic 

torque, rotor current, and dc-link voltage under grid faults. 

Artificial intelligence (AI) techniques have also been 

researched because of their promise to effectively handle 

nonlinear challenges. Additionally, the researchers provided 

numerous kinds of LVRT techniques in Refs. [15, 27–29]. 

However, they are typically more complex and difficult to 

construct in practice. While extra circuits are preferred 

because of their simpler design process, to improve the LVRT 

capacity of the wind turbine powered by DFIG and linked to 

the Egyptian electrical grid. 

This article provides a thorough analysis of the design and 

modelling of a protection strategy using a series resistor (SR). 

Controlling the rotor current is the SR's priority. By 

dissipating active power. It also shields the dc-link against 

overvoltage and torque fluctuations. As a result, the DFIG can 

withstand both symmetric and asymmetrical high-voltage 

drops. The protection system is simulated with the 

MATLAB/SIMULINK tool to verify the finding. 

The structure of this article is as follows: Section II 

describes an Al-Zafarana wind park. According to SR, Section 

III describes the DFIG protection scheme in full. Section IV 

discusses simulation modelling. The simulation findings and 

the impact of the SR scheme on DFIG are discussed and 

evaluated in Section V. Section VI presents the conclusions. 

2. Al-Zafarana Wind Park Description 

Al-Zafarana Wind Park is regarded as the biggest wind 

park in the Mideast. By 2022, the Al-Zafarana wind park will 

add 545 MW to the Egyptian electrical grid at 220 kV. This 

park stands out because of a variety of characteristics, 

including an average wind speed of 10 m/s and perfect 

geographic and ecological factors. Since 10 years ago, this 

farm has been linked to the grid in eight phases [30, 31]. Each 

phase is a separate wind farm project. 

The projects are known as "zafarana wind farm Z1 (30 

MW- 50 WT)"; "zafarana wind farm Z2 ( 33 MW- 55 WT)", 

"zafarana wind farm Z3 (30 MW -50 WT)", "zafarana wind 

farm Z4( 47 MW- 71WT)", "zafarana wind farm Z5 (85 MW- 

100 WT)", "zafarana wind farm Z6( 80 MW -94 WT)", 

"zafarana wind farm Z7( 120 MW - 141 DFIG- under install)", 

and "zafarana wind farm Z8( 120 MW- 141 DFIG- under 

install),  As depicted in Fig. 1. Six wind farms have already 

been up and linked to the grid, and the last two phases will be 

finished by 2022 [32, 33]. Al-Zafarana Wind Park is a prime 

example of international collaboration between the Egyptian 

government and many nations, including Denmark, Germany, 

Japan, and Spain. Al-Zafarana Wind Park's designated area is 

150 km2, and it is located between the latitudes of (3236) and 

(2906) [34, 35]. 

The building of many wind farms is AL-Zafarana Wind 

Park's key characteristic. This feature makes it easier to 

evaluate the effectiveness of each wind farm independently. 

The fifth phase of the wind farm is included for simulation 

purposes within this research. It comprises 100 wind turbines, 

each with an 850 KW DFIG unit, which makes up the system, 

which generates 85 MW of power in total. As shown in Fig. 

2, seven feeders, served as the distribution points for the 

DFIGs. A 690 V/22 KV local step-up transformer serves as 

the connection point for each wind turbine. Three 75 MVA, 

22/220 kV main step-up transformers are used to feed the 

gathered energy to the Egyptian electricity system at 220 kV 

[36]. 

2.1 WT Model   

The following relationship describes the mechanical 

power Pm produced by the WT generators [37, 38]: 

Pm =
1

2
Cp(λ, β)ρAtVω

3                                                                  (1)                                                                                                            
 

Whereas the WT swept area (A), wind speed (Vω), air density 

(ρ), power coefficient (Cp), blade pitch angle (β), and the 

turbine's angular speed to wind speed ratio (λ). Following is a 
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definition of the relationship between the blade pitch angle 

and the tip speed ratio: 
 

{
 
 

 
 𝑐𝑝(𝜆, 𝛽) = 0.0068𝜆 + 0.5176 (

116

𝜆𝑖
− 0.4𝛽 − 5)

𝑒
−21

𝜆𝑖
⁄
    

1

𝜆𝑖
=

1

𝜆+0.08𝛽
−

0.035

𝛽3+1
                                  

                                                

               (2)                                                                 

                                                               

The tip speed ratio is defined as follows: 

 𝜆 =
R ωt

Vω 
                                                                                     (3) 

Whereas R is the radius of the WT and ωt is its rotating speed. 

 

𝑐𝑝 = 0.22(
116

𝜆𝑖
− 0.4𝛽 − 5) 𝑒

−12.5
𝜆𝑖
⁄
                                  (4)                                                                                                          

 

With         1
𝜆𝑖
=

1

𝜆+0.08𝛽
−

0.035

𝛽2+1
 

 

 

 
 

Fig. 1. Al-Zafarana wind Park geographical location [33]. 
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Fig. 2. The Zafarana Z5 wind farm - simplified layout
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2.2 DFIG Model 

In modern wind energy farms, the DFIG is the most 

popular type of wind turbine. As illustrated in Fig. 3, the DFIG 

stator terminals are straight-linked to the network, and energy 

converters supply power to the rotor terminals. While the 

network side-converter keeps the dc- link voltage consistent, 

the rotor side-converter separately regulates the stator reactive 

and active energy at a steady state. 

Refs. [39] provide the rotor and stator efforts in reference 

frames d and q. 

{
 
 

 
 𝑉𝑑𝑠 = 𝑅𝑠𝐼𝑑𝑠 + 𝑃ɸ𝑑𝑠 − 𝜔𝑠ɸ𝑞𝑠
𝑉𝑞𝑠 = 𝑅𝑠𝐼𝑞𝑠 + Pɸ𝑞𝑠 + 𝜔𝑠ɸ𝑑𝑠
𝑉𝑑𝑟 = 𝑅𝑟𝐼𝑑𝑟 + Pɸ𝑑𝑟 − 𝜔𝑟ɸ𝑞𝑟
𝑉𝑞𝑟 = 𝑅𝑟𝐼𝑞𝑟 + Pɸ𝑞𝑟 +𝜔𝑟ɸ𝑞𝑟

                                         (5) 

The fluxes of the rotor (ɸdr , ɸqr) and stator (ɸds,ɸqs),  

whereas Ids, Iqs, Iqr and Idr are connected to the same q and d 

currents: 

{
 

 
ɸ𝑞𝑠 = 𝐿𝑠𝐼𝑞𝑠 +M𝐼𝑞𝑟
ɸ𝑑𝑠 = 𝐿𝑠𝐼𝑑𝑠 +M𝐼𝑑𝑟
ɸ𝑞𝑟 = 𝐿𝑟𝐼𝑞𝑟 +M𝐼𝑞𝑠
ɸ𝑑𝑟 = 𝐿𝑟𝐼𝑑𝑠 +M𝐼𝑑𝑠

                                                                (6) 

Where: M is the magnetizing inductances , Rr, Rs are the 

rotor and  stator resistances, Lr, Ls are the rotor and stator 

inductances, and  ωr, ωs are rotor speed  and synchronous. 

The electromagnetic couple is given by: 

Tem = P
M

Ls
[ ΦqsIdr − ΦdsIqr]                                       (7) 
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Fig. 3. The basic layout of DFIG-based WT 
 

3. DFIG Protection Scheme Using Series Resistor 

The SR is a group of resistors linked in series with the 

rotor windings in this protective scheme, as seen in Figs. 4 and 

5. A power electronic switch regulates the resistance's entry 

into the rotor circuit. Under normal circumstances, the switch 

is on, bypassing the resistors. In fault situations, the switch is 

off, connecting the resistors in series with the rotor windings. 

and thus controls the over-current and over-voltage of the 

rotor. 

 

It is unquestionably advantageous that the SR can control 

the current magnitude directly. The resistance will also split 

the overvoltage due to the SR's series topology. Consequently, 

it prevents converter control loss brought on by overvoltage 

and manages the robust rotor current. Limiting the current 

reduces the dc-link capacitor charging current, reducing the 

likelihood of a dc-link overvoltage. 

-

σ LrRr

vro

ir

vr

Series Resistor 

RSR

r

r r

+

 
Fig. 4. Rotor equivalent circuit with a SR. 

 

4. System Modelling and Simulation  
 

The simulation paradigm of the Egyptian electricity 

system coupled with the WTs is shown in Fig. 6. The system 

being studied comprises 15 DFIG-type Gamesa (G52–850 

kW), powered by 15 WTs. The WTs are coupled to a 0.96 

kV/22 kV step-up transformer. The step-up transformers, 

22/220 kV, 75 MVA, carry the energy from the Ain Sokhna 

substation to the Suez substation at 220 kV. A 220 kV gas-

insulated substation switchyard connects the Suez Energy 

Station to the Egyptian electrical grid. The grid is represented 

by an equivalent voltage source incorporating internal 

impedance. Also, Fig. 7(a&b) displays the Simulink model of 

the investigated system after adding an SR protection scheme 

and SR Control Diagram for DFIG protection and LVRT 

capacity optimization. Symmetrical as well as asymmetrical 

faults are applied in the transmission line to investigate the 

LVRT capability. The entire system is modeled and the 

outcomes are analyzed in the MATLAB/Simulink platform. 

The system data is presented in Table 1. 
 

4.1 Control of Resistor SR 
 

The control strategy is simple and easy to implement as 

shown in Figure 7(b), in normal operation, the switch is closed 

and the resistors are in bypass mode, In fault situations, the 

switch is open to let the current pass through the resistance. 
 

5.  Simulation Findings and the Impact of the SR 

Scheme on DFIG  
 

This section presents the findings of using the SR scheme 

of DFIG protection in a variety of grid fault scenarios. When 

a grid failure occurs far from or near the Point of Common 

Coupling (PCC), the WES may be greatly impacted. The 

impacts might include electrical torque variations, rotor 

winding overcurrent, and changes in DC-link voltage. At 

PCC, the impacts of symmetrical and asymmetrical faults are 

analysed and measured. As seen in Figs. 5 and 6, the faults are 

simulated at the grid connection point starting at time (t = 0.7 

s) and ending at time (t = 0.9 s), respectively. 
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Fig. 5.DFIG configuration by series resistor 

5.1 Case Study No. 1: The Symmetrical Fault  
 

Figure 8 depicts the inception of a 3-phase fault at 0.7 s 

and it is clearing at 0.9 s. A 60% voltage drop occurs. It is 

obvious, that the SR protection scheme provides significantly 

faster rejection of grid disturbances. Therefore, with the 

addition of SR to the rotor system, the induced voltages in the 

rotor that surfaced during the fault lost their power. This 

dampens the rise in the stator and rotor currents. The stator 

currents are reduced at the most severe phase from 2.1pu to 

1.13pu. Additionally, during the most dangerous phase, the 

Rotor current decreases from 1.77pu to 1.14pu. As a result, 

there is a significant reduction in electrical torque fluctuations 

and DC link voltage. All of the values acquired from the 

protection technique were significantly improved, according 

to the study indicated above. 

As displayed in Fig. 9, a 3-phase fault is simulated at the 

point of grid connection, commencing at the time (t = 0.7s) 

until clearing at the time (t = 0.9s). This diagram depicts the 

system's reaction to a 0.95pu effort drop lasting 0.2s. Due to 

the presence of SR in the rotor winding, the power from the 

induced efforts in the rotor that were create during the failure 

was dissipate in this simulation. As a result, the rise in rotor 

currents is reduce. As a result, the rotor currents decrease from 

2.5 to 1.21 pulses per second. Additionally, the dc-link effort 

and electrical torque oscillations are both decreased. SR 

protection has a better record of accomplishment in lowering 

currents at the grid connection site. 

5.2 Case Study No. 2: The Asymmetrical Fault  
 

The system reactions under asymmetrical fault situations 

as shown in Fig. 10. The SR is efficient in dissipating the 

induced voltage in the rotor for a phase "a" to ground short 

circuit. In the most severe phase, the rotor currents also 

increase from 1.7pu to 1.07pu. As a result, SR greatly lowers 
the variations in electrical torque and the dc-link voltage. 

Thus, the protection plan was able to handle the serious flaw. 
 

 

 
Fig. 6.Simulation paradigm of Egyptian Electrical Grid Linked to AL-Zafarana Egypt wind System. 

Table1.Base and rated values for the system under investigation.

 

 

                   Wind Turbine  
 

Generator 
 

 

Base wind speed (m/s)                 14 
 

Generator type                      Asynchronus 
 

Cut-in wind speed                       4.0 m/s 
   

Rated power(kW)                   850 
 

Cut-out wind speed                     25.0 m/s 
 

 

Rated voltage (V)                    690 
 

Base rotational speed (pu)            1.2 
 

 

Number of pole pairs               2 
 

Number of blades                            3 
 

Grid frequency (Hz )            50.0/60.0  
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(a) 

 
(b) 

Fig. 7. A Simulink model of SR protection scheme. 
 

 

 

 

A double-phase (phase-b and phase-c) fault is simulated at t = 

0.7s, and Fig. 11 depicts the system reactions under 

asymmetrical fault circumstances. The SR is efficient in 

dissipating the induced voltage in the rotor when phase's "b" 

and "c" are short-circuited together. The rotor currents 

dropped from 1.91pu to 1.104pu. SR minimizes DC-link effort 

and electrical torque varies greatly. 
 

Table 2 displays a comparison study between the proposed 

protection plan and those in the literature [40–42] based on 

simulation results .The proposed method provided better 

results in terms of damping for the currents increase at the 

generator terminals. Additionally, the SR scheme has built on 

a simple concept. It decreases the cost and complexity of the 

system. Hence, it contributes to system stability during grid 

faults. 
 

Table 2. Comparing the results obtained from protection 

schemes with other works. 

 

6. Conclusion 

The Egyptian electric grid with DFIG-based wind farms 

necessitates a turbulence reduction system to support the wind 

turbines' LVRT ability. The Al-Zafarana Z5 wind farm is 

connected to the SR protection system to enhance the system's 

overall performance. In this article, using an SR protection 

system will provide enhanced LVRT protection. The 

protection scheme is designed with a variety of system 

variables, including reactive and active energy fluctuations, 

rotor currents, DC link voltage, etc., that are gradually 

improving. Various fault scenarios have been simulated, such 

as: 

▪  By applying a symmetrical 60% voltage drop, it is      can 

be shown that SR scheme has significantly lowered the 

transient currents from 1.77pu to 1.14pu, Leading to the 

reduction of the dc-link charging current and hence lowering 

both the dc-link over-voltage, and torque variations. This 

improves the reliability of grid-connected wind energy 

systems. Also, by applying a symmetrical 95% voltage drop, 

the rotor currents is lowered from 2.5 to 1.21 pulsations per 

second. In addition, the electrical torque oscillations and dc-

link effort is reduced. It can be demonstrated that SR 

protection is more successful in reducing currents at the 

point of grid connection. 

▪ When a single phase is imposed on the ground, the rotor 

currents are reduced from 1.7pu to 1.06pu, hence improving 

the controllability of RSC and reducing the dc-link 

overvoltage. Also, under asymmetrical fault circumstances 

(phase-b and phase-c). The SR is efficient in dissipating the 

induced voltage in the rotor when phases "b" and "c" are 

short-circuited together. The rotor currents dropped from 

1.91pu to 1.104pu. SR minimizes DC-link effort and 

electrical torque varies greatly. 
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Fig. 8.The impact of the a 3-phase fault 60% effort dips on the DFIG with the SR protection scheme. 
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Fig. 9. The impact of a 3-phase 95% effort dips on the DFIG with the SR protection scheme. 
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Fig. 10. The impact of the asymmetrical fault " a phase a to ground "on the DFIG with the SR protection scheme. 
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Fig. 11.The impact of the asymmetrical fault " phase b to phase c "on the DFIG with the SR protection scheme
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      According to simulation results, the suggested solution is 

characterized by handling abnormal system circumstances and 

supporting the grid under symmetric and asymmetric failures. 

The plan is also unique in that the current quantities can be 

directly controlled, it is simple to build, and it is inexpensive. 
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