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Abstract- The paper attracts the attention that the accelerated lifetime of commercial concentrator lattice match triple-junction 

GaInP/GaInAs/Ge cells is better fitted by lognormal than Weibull distribution that has been adopted by most of the researchers 

in the field. A fair number of statistical tests are used to analyze a real-time dataset from accelerated life testing (ALT) that 

significantly favors the lognormal distribution. For comparison purposes, the Arrhenius-Weibull and lognormal stress 

relationships are used to predict the lifetime model under nominal conditions. They provide comparable estimates to the nominal 

meantime to failure (MTTF) and activation energy of the cells; yet, the two models possess different behaviors, especially at 

their tails and peaks. Moreover, an intensive Monte Carlo simulation is conducted to examine the distribution robustness towards 

censoring. The results again affirm that the censored samples of Lognormal are more efficient than those of Weibull in estimating 

the distribution parameters.  

 

Keywords Accelerated life test; Arrhenius life-stress relationship; Concentration photovoltaic systems; Efficiency of censored 

samples; Goodness-of-fit tests; Lognormal distribution; Solar cells; Weibull distribution. 

 

 

1. Introduction 

The growth of energy demands due to technological and 

demographical expansion has led to more pollution resulting 

in global warming associated with many environmental and 

natural disasters worldwide. Concerns about the changing 

environment and fossil fuel depletion have prompted much 

controversy and scrutiny of more green energy. In particular, 

solar power riveted vast attention in the last several years at 

the forefront in reducing greenhouse gas emissions. Driven by 

the world's energy demands, photovoltaic cells are on course 

to accelerate renewable technologies. Under the scope of this 

growth, the concentrated photovoltaic (CPV) technology 

continues to achieve an unparalleled efficiency of 47.1%, far 

beyond the traditional flat plate technology [1,2]. The 

minimizing thermalization and absorption losses may push 

efficiency even higher and provide a potential pathway for the 

production of solar electricity at a reduced cost [3,4]. 

Nonetheless, reliability remains one of the challenges 

hindering further proliferation of this technology. Long-term 

stability and reliability are the bottlenecks for establishing 

confidence in designing engineering disciplines. In the context 

of performance analysis, reliability is also a key objective for 

cost competitiveness and commercialization of renewable 

energy devices and systems, delivering economical and 

quality power. Achieving such objectives necessitates a 

proper analysis and modeling of the system's lifetime. 
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Fig. 1. Unreliability of the ALT data as a function of time 

at the three stress levels for Weibull. 

CPV is a relatively new technology, leading to a scarcity 

of long-term historical knowledge about its lifetime 

characteristics and performance degradation. Since standard 

lifetime tests can span several decades in data collection, it is 

impractical to wait that long to assess reliability. Hence, 

accelerated lifetime tests (ALTs) are engineered to obtain life 

data by mimicking the field failure modes within an 

acceptable time frame. ALTs are implemented in the 

laboratories by applying more severe stresses than actual use 

conditions by exposing the CPVs to different accelerating 

stresses, such as temperature, current, and voltage. The 

accelerated data derived from ALTs is then used to extrapolate 

and characterize the product lifetime model and performance 

under operating conditions. The lifetime model is a function 

of time that describes the underlying probabilistic distribution 

of failure events. It reveals essential information about the 

product, such as the projected warranty, returns cost, and the 

MTTF. Improper fit of the distribution model or wrong 

estimation of its parameters can fail to reflect the life data 

analysis accurately, hence drawing false conclusions. As such, 

the performance of a CPV needs an accurate prediction, which 

subsequently allows energy industries to carry out strategic 

plans related to the maintenance or replacement of CPV 

systems, given the efficiency of solar cells has been 

obsolete. Henceforth, serious efforts must be devoted to 

building an appropriate lifetime distribution model for CPV 

cells. 

This work re-evaluates the accelerated lifetime testing 

data of CPV under different thermal stresses for 45 

commercial concentrator lattice match triple-junction 

GaInP/GaInAs/Ge cells [5]. As a general trend, Weibull is the 

classical distribution used in literature to model solar cells and 

electronics lifetime [6,7,8,9,10,11,12,13]. Many advocate the 

selection of Weibull solely to its popularity in reliability 

assessment, commercial software availability, and flexibility. 

In addition, few papers used other distributions deprived of 

scientific proof [14,15,16,17,18]. The absence of a solid 

statistical basis raises a question about the suitability of other 

parametric distributions. 

To our knowledge, this work has not been done 

previously. Unlike the aforementioned works, we provide a 

valuable insight into the lifetime modeling of the concentrator 

III–V triple-junction solar cells in order to motivate and aid in 

the development of reliable CPV modules with a well-defined 

warranty. The main contribution of this work is a novel and 

holistic statistical analysis that discriminates between 

lognormal and Weibull distributions in fitting to CPV 

experimental data through a comprehensive comparative 

framework, supported by standard tests and indicators. 

Leveraging on our obtained results, we provide efficient 

entropy-based estimators of the MTTF and warranty times of 

photovoltaic modules, demonstrating that lognormal is a 

better lifetime model for CPV cells. The rest of the paper is 

structured as follows: In Sec. 2, the experimental ALT is 

clarified, considering the temperature as the primary 

accelerating variable and determinant of cell degradation. For 

the convenience of readers, Sec. 3 recalls the elementary 

functions of the two distribution models. Sec. 4 conducts 

several goodness-of-fit tests to confirm that both distributions 

successfully fit the experimental data showing that the 

lognormal distribution is significantly favorable. Sec. 5 

utilizes the Arrhenius stress relationship in estimating the 

lifetime models under practical conditions for both probability 

distributions. Based on the derived models at operating 

conditions, an intensive simulation is performed in Sec. 6 to 

validate that the censored samples are highly efficient 

estimators when the lifetime model is assumed to be 

lognormally distributed. Lastly, Sec. 7 summarizes and 

concludes the paper. 

2. Experiment 

The experimental data is adopted from [5]. In [5], a 

sample of 45 commercial concentrators lattice-matched 

GaInP/GaInAs/Ge cells was equally segregated and exposed 

to three temperature levels; T1: 164°C (437K), T2: 126°C 

(399K), and T3: 119°C (392K). The time a cell was able to 

endure that temperature was recorded, reflecting the cell 

lifetime. The operation was replicated by injecting current in 

the darkness, which is equivalent to the photogenerated 

current by CPV subjected to the actual field irradiance of 

820X. The failure was identified by checking the dark I-V 

(current-voltage) curve, an effective approach for examining 

the current-voltage characteristics of the solar cells in dark 

conditions. At the lowest temperature intensity, T3, ALT took 

a long time to induce failures, so the experiment was 

terminated after the failure of the 9th cell. This segment of the 

CPV cells is considered censored as some are still operating. 

Thus, their exact lifetimes are unknown, whereas the two 

higher temperature levels, T1 and T2, resulted in the failure of 

all the CPVs. Once all the observed failure times, t, were 

recorded, statistical treatment was employed to deduce the 

CPV population lifetime model. Fig. 1 and Fig. 2 depict the 

probability plots of the observed failure times, which 

graphically show the compliance of the data to the two-

lifetime models, Weibull and Lognormal. Nevertheless, 

probability plots are deemed subjective [19]; a comprehensive 

analysis is accomplished when combining graphical and 

analytical techniques. The latter is the subject of the following 

sections. 
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3. Weibull and lognormal distributions 

For the convenience of readers, this section recalls the 

probability density function (PDF), cumulative distribution 

function (CDF), mean and mode, and the maximum likelihood 

estimating equations (MLEs) from complete sample {𝑋1,  𝑋2  ,
… ,  𝑋n } and type I right censored samples 

{𝑋1, 𝑋2, . . . , 𝑋𝑟}, 𝑟 ≤ 𝑛 for both distributions [20]. 

 

3.1   Weibull distribution 

Weibull distribution, denoted in this paper by Weibull 

(𝛼, 𝛽) where 𝛽 ∈ (0, ∞) is the scale parameter, and 𝛼 ∈
(0, ∞) is the shape parameter, has the following statistical 

terms: 

PDF:   𝑓(𝑥) =
𝛼

𝛽
(

𝑥

𝛽
)𝛼−1𝑒𝑥𝑝 [−(

𝑥

𝛽
)𝛼] , 𝑥 ≥ 0.                      (1) 

CDF:   𝐹(𝑥) = 1 − 𝑒𝑥𝑝 [−(
𝑥

𝛽
)𝛼] , 𝑥 ≥ 0                      (2)       

Mean: = 𝛽Γ(1 +
1

𝛼
) ,                                                             (3)                                              

where Γ(. ) is the gamma function. 

Mode: 𝜗 = 𝛽 (
𝛼−1

𝛼
)

1

𝛼
, when 𝛼 > 1.                 (4)                                                

MLEs from complete samples: 

∑𝑛
𝑖=1 𝑥𝑖

𝛼̂𝑐𝑜𝑚log𝑥𝑖

∑𝑛
𝑖=1 𝑥

𝑖
𝛼̂𝑐𝑜𝑚

−
1

𝛼̂𝑐𝑜𝑚
=

1

𝑛
∑𝑛

𝑖=1 log𝑥𝑖 ,       (5a)                                                                     

𝛽̂𝑐𝑜𝑚 = (
1

𝑛
∑𝑛

𝑖=1 𝑥𝑖
𝛼̂𝑐𝑜𝑚)

1/𝛼̂𝑐𝑜𝑚
.                                   (5b)                                                        

 

 

 

MLEs from censored samples: 

𝑟 = (𝑛 − 𝑟)(𝑡/𝛽̂𝑐𝑒𝑛)
𝛼̂𝑐𝑒𝑛

log(𝑡/𝛽̂𝑐𝑒𝑛) − ∑𝑟
𝑖=1 [1 − (𝑥𝑖/

𝛽̂𝑐𝑒𝑛)
𝛼̂𝑐𝑒𝑛

] log(𝑥𝑖/𝛽̂𝑐𝑒𝑛)
𝛼̂𝑐𝑒𝑛

 ,                                               (6a) 

𝑟 = (𝑛 − 𝑟)(𝑡/𝛽̂𝑐𝑒𝑛)
𝛼̂𝑐𝑒𝑛

+ ∑𝑟
𝑖=1 (𝑥𝑖/𝛽̂𝑐𝑒𝑛)

𝛼̂𝑐𝑒𝑛
.      (6b)  

 

3.1 Lognormal distribution 

The lognormal distribution is denoted by Lognormal 

(𝜇, 𝜎) where 𝜇 ∈ (−∞, ∞) is the scale parameter, and 𝜎 ∈
(0, ∞) is the shape parameter, has the following statistical 

terms: 

 PDF: 𝑓(𝑥) =
1

𝑥𝜎√2𝜋
    𝑒𝑥𝑝 [

(log𝑥−𝜇)2]

2𝜎2 ] , 𝑥 ≥ 0.                     (7) 

CDF:   𝐹(𝑥) =
1

2
+

1

2
𝑒𝑟𝑓 [

log𝑥−𝜇

√2𝜎
] , 𝑥 ≥ 0.                          (8) 

Mean: 𝜃 = 𝑒𝑥𝑝 (𝜇 +
𝜎2

2
).                                                   (9)

                                                                                       

 Mode: 𝜗 = 𝑒𝑥𝑝(𝜇 − 𝜎2).  . (10)

                                                                                      

 MLEs from complete samples:    

𝜇̂𝑐𝑜𝑚 =
1

𝑛
∑𝑛

𝑖=1 log𝑥𝑖 , (11a)

                                                                                     

𝜎̂𝑐𝑜𝑚 = √
1

𝑛
∑𝑛

𝑖=1 (log𝑥𝑖 − 𝜇̂𝑐𝑜𝑚)2.                                 (11b)

                                                                             

MLEs from censored samples: 

𝜇̂𝑐𝑒𝑛 =
1

𝑟
∑𝑟

𝑖=1 log𝑥𝑖 +
𝑛−𝑟

𝑟

𝜙(𝑧𝑐𝑒𝑛)

1−𝜑(𝑧𝑐𝑒𝑛)
𝜎̂𝑐𝑒𝑛 ,              (12a)  

      

𝜎̂𝑐𝑒𝑛 =

√
1

𝑟
(log𝑡 − 𝜇̂𝑐𝑒𝑛) ∑𝑟

𝑖=1 (𝜇̂𝑐𝑒𝑛 − log𝑥𝑖) +
1

𝑟
∑𝑟

𝑖=1 (log𝑥𝑖 − 𝜇̂𝑐𝑒𝑛)2,                                                                                                   

                                                 (12b) 

where 𝑧𝑐𝑒𝑛 =
log𝑡−𝜇̂𝑐𝑒𝑛

𝜎̂𝑐𝑒𝑛
, 𝜙 and 𝜑 are the PDF and CDF of the 

standard normal distribution, respectively. 

The scale parameter determines the steepness of the failure 

density distribution curve and exhibits the length of object life. 

On the other hand, the shape parameter directly affects the 

geometric shape of the failure density distribution curve, 

which reflects the failure mechanism of objects. 

 

4. Goodness of model 

Three of the most powerful goodness-of-fit tests are used 

in evaluating how well the lognormal and Weibull 

distributions fit the three datasets obtained from ALT. The 

hypothesis tests considered in this work are Anderson-Darling 

(AD) [22,23], Cramer-von Mises (CvM) [24,25], and Jarque-

Bera (JB) [26]. The first two tests are commonly used in the 

test of fit of a family of distributions, including Weibull and 

Fig. 2. Unreliability of the ALT data as a function of time 

at the three stress levels for lognormal. 
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lognormal distributions, whereas JB is only used to confirm 

the lognormality of the data. As the distributions' parameters 

are estimated from the experimental data, adjusting the test 

statistics and critical values of the tests must be taken into 

consideration. Therefore, an intensive simulation approach is 

chosen to implement these tests in order to avoid obtaining 

any wrong results. CvM and AD test statistics belong to the 

class of quadratic statistics [21] that have the following 

general form  

𝑄 = 𝑛 ∫ {𝐹𝑛(𝑥) − 𝐹(𝑥)}2𝜓(𝑥)𝑑𝐹(𝑥)
∞

−∞
,       (13) 

where 𝑛 is the observed sample size, 𝐹𝑛(𝑥) is the CDF of the 

sample, 𝐹(𝑥) is the CDF of the candidate theoretical 

distribution, and 𝜓(𝑥) is a suitable weight function. When 

𝜓(𝑥) = 1, the statistics 𝑄 becomes the CvM statistics, and 

when 𝜓(𝑥) = {𝐹(𝑥) − 𝐹2(𝑥)}−1, it becomes the AD 

statistics, which are respectively given in equations Eq. (14) 

and Eq. (15). CvM places more weight to the center of the 

distribution, whereas AD amplifies the effect of the tail. 

Therefore, together would give a strong reason to accept or 

reject a candidate distribution. The test statistics of AD and 

CvM are given by:  

𝐴𝐷 = −𝑛 −
∑ (2𝑖−1)(𝐿𝑜𝑔(𝑧𝑖)+𝐿𝑜𝑔(1−𝑧𝑛+1−𝑖))𝑛

𝑖=1

𝑛
 .      (14)                                               

𝐶𝑉𝑀 =
1

12𝑛
+ ∑ (

2𝑖−1

2𝑛
− 𝑧𝑖)

2
𝑛
𝑖=1  .                 (15)                                                           

       

where 𝑧𝑖 = 𝐹(𝑥𝑖), 𝑖 = 1,2, … , 𝑛, are the ranks of the observed 

values 𝑥𝑖  under 𝐹(𝑥), and that of JB is as follows:  

 𝐽𝐵 = 𝑛(
s2

6
+

(k−3)2

24
) ,              (16)                                                                      

  

where 𝑠 and 𝑘 are skewness and kurtosis parameters of the 

log-transformed data, respectively. The JB is commonly 

applied as a complementary test in checking the validity of 

lognormality besides the aforementioned tests. This test is not 

suitable for assessing Weibull distribution. 

         The tests are implemented using Monte Carlo 

Simulation by generating a huge number of samples of 20000 

to achieve precise estimates for the critical values and p-

values. For the censored third stress (T3) data, modified tests 

are used as in [24] and [29] for the Cramer-von Mises, 

Anderson-Darling, and the Kolmogorov-Smirnov. Also, the 

estimates of the moments used in the Jarque-Bera test are 

obtained from censored data [30]. The results of the tests are 

shown in Tables 1-3 for the three data sets, respectively, in 

agreement with that of [31], which primarily investigated the 

problem. The distribution that scores a higher p-value is 

favorable as it reflects a closer fit to the data. A 5% level of 

significance is assumed. Tables 1-3 use the following 

abbreviations, TS: Test statistic, CV: Critical Value, PV: p-

value, W: Weibull, and L: Lognormal. 

 

 

From Tables 1-3, one can see that both distributions fit ALT 

datasets well. However, all indicate that the lognormal is the 

best fitting model as it achieves a higher p-value for AD and 

CvM in almost all cases. Furthermore, JB strongly 

recommends lognormal. JB is deemed a strong evidence for 

lognormality when the logarithm of the sample is proved to be 

normally distributed [27,28]. Therefore, according to the 

results above, it can be concluded that, at least, the given CPV 

data is better fitted by lognormal than Weibull. 

5.   Predicting the lifetime at operating conditions 

         Since the ALT samples of the stresses 𝑇1 and 𝑇2 are 

complete, the MLEs for both distributions are calculated from 

Eq. (5) and Eq. (11). On the other hand, the data of stress 𝑇3 is 

censored, hence its MLEs are calculated from Eq. (6) and Eq. 

(12). The termination time for stress 𝑇3 is set as t=3600 h, 

corresponding to the 9th cell failure at 3515 h. The results are 

outlined in Table 4.  

 

Table 1. Goodness-of-fit tests summary for the data set  𝑇1 

 Weibull      Lognormal  

Test TS CV PV TS CV PV Best 

Fit 

AD 
0.318 0.736 0.570 0.327 0.732 0.543 

W 

CvM 
0.046 0.120 0.579 0.053 0.126 0.597 

L 

JB 
NA 0.662 3.214 0.589 

 

 

Table 2. Goodness-of-fit tests summary for the data set  𝑇2 

 Weibull      Lognormal  

Test TS CV PV TS CV PV Best 

Fit 

AD 0.358 0.729 0.466 0.247 0.733 0.769 L 

CvM 0.049 0.121 0.541 0.024 0.124 0.557 L 

JB NA 0.545 3.384 0.682  

Table 3. Goodness-of-fit tests summary for the data set  𝑇3 

 Weibull      Lognormal  

Test TS CV PV TS CV PV Best 

Fit 

AD 0.148 0.410 0.528 0.136 0.379 0.554 L 

CvM 0.025 0.071 0.448 0.025 0.068 0.458 L 

JB NA 3.456 4.587 0.334  
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It can be easily seen from Table 4 that the life scale increases 

as the stress decreases, where the life scale is represented by β 

for Weibull and 𝜇 for lognormal. On the other hand, the failure 

mechanism exhibits the same style for the three stresses as the 

shape parameters, α or σ, are very similar and free of the stress 

T. Usually, the Arrhenius-type model is vastly used to 

calculate thermal acceleration in the life-stress relationship 

[32], which is governed by: 

𝑙(𝑇) = 𝑒𝑎+𝑏/𝑇 ,                                 (17)                                                             

where 𝑙: is any life measure such as the characteristic, median, 

or mean lives, 𝑇: denotes the stress, which is the temperature 

in Kelvin, and 𝑎, 𝑏: are the model acceleration parameters to 

be obtained. 

The linear form of the Arrhenius model can be obtained by 

taking the logarithms of both sides of Eq. (17), which reduces 

to: 

log𝑙 = 𝑎 + 𝑏
1

𝑇
                   (18)

                      

The common life measure for Weibull is assumed to be (𝑙 =
𝛽), which is the 63rd percentile of the distribution, whereas it 

is the median (𝑙 = 𝑒𝜇) for lognormal distribution [19]. Hence, 

the Arrhenius-Weibull and Arrhenius–Lognormal models can 

respectively be written as: 

Weibull: log𝛽 = 𝑎 + 𝑏 
1

𝑇
               (19)

                         

Lognormal: 𝜇 = 𝑎 + 𝑏 
1

𝑇
                 (20)

                      

The key assumptions that validate using Arrhenius stress 

relationship models Eq. (19) and Eq. (20) are: 

(A1) The three datasets must acceptably fit the Weibull or 

lognormal lifetime model, which has been confirmed in Sec. 

4.  

(A2) The failure mechanism is free of the stresses 𝑇1, 𝑇2, 

𝑇3 and the use stress, where the applied stress only changes the 

scale of the lifetime. This implies that the shape parameters of 

the lifetime distributions, for all thermal stress levels and use 

stress, must be the same: 

Weibull: 𝛼 = 𝛼1 = 𝛼2 = 𝛼3                (21)

             

Lognormal:  𝜎 = 𝜎1 =  𝜎2 =  𝜎3                (22) 

This is a strong assumption that is practically not possible to 

hold precisely. Therefore, the weighted average of the shape 

parameters at all stresses would be a reasonable estimation of 

the shape parameters at normal operating conditions, given as 

the following: 

Weibull: =
∑ 𝑛𝑖𝛼𝑖

3
𝑖=1

∑ 𝑛𝑖
3
𝑖=1

= 2.7055 ,                    (23)

                                 

Lognormal: 𝜎 =
∑ 𝑛𝑖𝜎𝑖

3
𝑖=1

∑ 𝑛𝑖
3
𝑖=1

= 0.4642,                     (24)

           

where 𝑛1 = 𝑛2 = 15 and 𝑛3 = 9 as clarified in Sec. 2. 

(A3) The relationship between log𝛽𝑖  and 1/𝑇𝑖 , and, 𝜇𝑖  and 

1/𝑇𝑖  should be sufficiently linear. This is proven using the 

linear correlation coefficient (𝜌) between log𝛽𝑖  and 1/𝑇𝑖 , and, 

between 𝜇𝑖  and 1/𝑇𝑖 . But since 𝑙𝑜𝑔𝑇𝑖  is common, it is enough 

to calculate 𝜌 between log𝛽𝑖  and 𝜇𝑖, which is in this case, 

𝜌=0.99, as can be easily checked from Table 5.  

 

The accelerating parameters 𝑎 and 𝑏 in Eq. (19) and Eq. (20) 

are obtained using the least square method. For the Weibull 

model (𝑎 = −39.1065, 𝑏 = 18522.4435), whereas for 

lognormal (𝑎 = −39.5016, 𝑏 = 18604.9327), and the two 

equations take the following forms: 

Weibull: log𝛽 = −39.1065 + 18522.4435 
1

𝑇
      (25)

                           

Lognormal: 𝜇 = −39.5016 + 18604.9327 
1

𝑇
        (26) 

The scale parameters corresponding to each distribution under 

operating conditions are then determined by substituting 𝑇 =
353 𝐾 in Eq. (25) and Eq. (26):         

Weibull: 𝛽 = 637309.9                   (27)

                          

Lognormal: 𝜇 = 13.2036                               (28)

                           

The accelerating parameter 𝑏 in the Arrhenius model Eq. (17) 

hides a critical parameter 𝐸  

 𝑏 =
𝐸

𝑘
 ,                 (29) 

where 𝐸 (eV) is the activation energy, which is the minimum 

energy needed to induce the failure mechanism, and 𝑘 =
8.6173303 × 10−5eVK−1 is the Boltzmann's constant. The 

activation energy can be calculated for both models by 

Table 4. MLEs vs. stress levels 

Stress level MLEs: Weibull MLEs: Lognormal 

𝑇1 =164oC/437 K 

β1 = 27.0, 

  α1 = 2.709 

𝜇1 = 3.0920, 

 σ1 = 0.415 

𝑇2=126 oC/399 K 

β2 = 1351.8, 

α2 = 2.764 

𝜇2 =  7.0062, 

 𝜎2 = 0.424 

𝑇3 =119 oC/392 K 

β3 =  3745.8, 

α3 =  2.602 

𝜇3 = 8.0673,  

𝜎3 = 0.518 

Table 5. The relationship between 𝟏/𝑻𝒊 and 𝐥𝐨𝐠𝜷𝒊 and 𝝁𝒊 

 𝑇1 = 437  𝑇2 = 399  𝑇3 = 392 

1/𝑇𝑖 0.0022883  0.002506 0.0025510 

log𝛽𝑖 3.2958 7.2092 8.2284 

𝜇𝑖 3.0920 7.0062 8.0559 
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substituting the values of 𝑏 from Eq. (25) and Eq. (26) in Eq. 

(29). It can be checked that the estimates of E from Weibull 

and lognormal are E=1.59614 eV and E=1.60325 eV, 

respectively, which are in excellent agreement with E =1.59 

eV derived in [5]. Indeed, activation energies of solar cells 

obtained in other works [6,33,34,35,36] range between 0.5 to 

1.75 eV, depending on the fabrication material and processing. 

Interestingly, similar activation energies are reported for 

several optoelectronic devices [37,38,39,40,41].  

Table 6 illustrates the figures of particular interest to investors 

and manufacturers under operating conditions in view of 

Weibull and lognormal distributions. The figures are the 

estimated parameters, the mean time to failure 𝜃, the mode 

time, defined as the most frequent failure time 𝜗, and 5% and 

10% warranty times expressed as 𝑊5 and 𝑊10, respectively. 

The times are provided in hours (h) and years (y) after 

assuming five daily working hours under 80°C (353 𝐾) 

temperature. 

 

6. Performance of censored data             

To improve the design of ALTs, larger samples and less 

stress levels are usually considered. Larger samples are 

expected to be more representative of the population under 

consideration, whereas less stress would activate failures 

more naturally as they would be in reality and better imitate 

the use environment. However, these two factors would 

definitely lead to a significant expansion in the duration of 

the ALTs, where some objects are anticipated to have a long 

lifetime, making it difficult to be observed given the cost and 

time constraints. Hence, to save time and reduce cost, it might 

be convenient to terminate the ALT at a pre-assumed time 𝑡 

and  be content with observing the lifetime of objects that fail 

before the time 𝑡. In the literature, this technique is known as 

type I right censoring. Mathematically speaking, when a 

complete ordered sample 𝑋𝑐𝑜𝑚 = {𝑋1,  𝑋2  , … ,  𝑋n } of 

lifetimes is right-censored at time 𝑡, the resultant right-

censored sample can be described as 𝑋𝑐𝑒𝑛(𝑡) =

{𝑋1, 𝑋2, . . . , 𝑋𝑟} , which comprises of the lifetimes that are 

less than or equal to 𝑡, that is, 𝑋(𝑖) ≤ 𝑡, for all 𝑖=1,2, … , 𝑟, 

where 𝑟 ≤ 𝑛 is the size of the censored sample. Censoring 

schemes would definitely save time and cost, yet, they may 

as well cause a significant loss of information that would 

harm the estimation as a post-process when the termination 

happens too early. On the other hand, late termination would 

waste time, and hence the whole process becomes useless. 

Hence, the efficiency of censored samples must be carefully 

examined and assessed. In addition, the efficiency of 

censored samples is significantly affected by the assumed 

statistical model of the experimental data, where it is 

expected that censored samples of the best fitting model are 

most efficient. 

In this context, an additional advantage of the lognormal 

distribution is added as its censored samples will be proved 

to be more efficient in estimating the MTTF than those of 

Weibull distribution. Considering the following criteria, the 

performance of censored samples can be evaluated:   

1) The relative error in estimating the mean time to failure.  

To conduct a sensible comparison, it might not be convenient 

to compare the parameters of Weibull to those of lognormal. 

A more logical approach compares the predicted MTTF 

resulting from Weibull and lognormal since they refer to the 

same information and have the same physical meaning [42] 

in both models. Let the estimated values of the MTTF be 

denoted by 𝜃𝑐𝑜𝑚  and 𝜃𝑐𝑒𝑛(𝑡) from a complete sample and its 

censored sample at time 𝑡, respectively, the simple relative 

error in estimating the MTTF is  

𝜖𝑡 = |𝜃𝑐𝑜𝑚 − 𝜃𝑐𝑒𝑛(𝑡)|/𝜃𝑐𝑜𝑚.             (30)

                      

It can be noticed that the complete sample is mandatory to be 

fully observed in order to compute the relative error, which is 

not the case in practical applications as in the case of the third 

stress 𝑇3. Therefore, a more practical criterion is needed for 

that purpose.  

2) The entropy-based efficiency of the censored sample.  

The use of entropy to measure the amount of information in 

the truncated distributions [43,44,45] and censored samples 

[46,47,48,49,50] has been widely employed in the literature. 

This paper applies sup-entropy [47] through its 

corresponding efficiency of the censored sample, defined by: 

𝜏𝑡 =
𝐸[log(𝑓(𝑋𝑐𝑒𝑛(𝑡))/𝛿𝑐𝑒𝑛)]

𝐸[log(𝑓(𝑋𝑐𝑜𝑚)/𝛿𝑐𝑜𝑚)]
,                                          (31)       

where  

𝑓(𝑥𝑐𝑜𝑚) = 𝑛! ∏ 𝑓(𝑥(𝑖)
𝑛
𝑖=1 ),                                                  (32)    

                              𝑓(𝑥𝑐𝑒𝑛(𝑡)) = 𝑑[1 −
𝐹(𝑡)]𝑛−𝑟 ∏ 𝑓(𝑥(𝑖)

𝑟
𝑖=1 ),                     (33)                                                            

           

where d denotes the ordering constant, 𝑓(𝑥𝑐𝑜𝑚) and 

𝑓(𝑥𝑐𝑒𝑛(𝑡)) are the likelihood probability density functions of 

the complete and censored samples [52] and, 𝛿𝑐𝑜𝑚  and 𝛿𝑐𝑒𝑛 

are their supremum values, respectively.  

Table 6. The estimations of some key figures under 

operating conditions obtained from the two lifetime 

distributions 

Figure Weibull Lognormal 

Shape 𝛼 =2.7055 𝜎 =0.4642 

Scale 𝛽 = 637309.9 𝜇 = 13.2036 

𝜃 
566788 h 

310 y 

604007 h 

330 y 

𝜗 
537379 h 

294 y 

447096 h 

240 y 

𝑊5 
212602 h 

116 y 

252725 h 

138 y 

𝑊10 
277406 h 

152 y 

299151 h 

164 y 
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   Since the efficiency function depends on the distributions' 

parameters, they are endeavored to be estimated from the 

censored sample. The estimates will be acceptable only if the 

data is not excessively censored, which would happen when 

the termination time exceeds the mode of the distribution 

[42].  

The efficiency Eq. (31) is an increasing function of t and 

bounded by zero and one for all probability distributions [30], 

which justifies its applicability in judging the performance of 

censored samples with respect to complete samples. 

An intensive Monte Carlo simulation is adopted in this 

section to investigate the performance of censored samples 

under field conditions from Weibull and lognormal 

distributions relying on the aforementioned criteria Eq. (30) 

and Eq. (31). The complete sample size is set to be n=15, 

matching the experimental sample's size at each stress.  

To avoid excessive censoring, the initial termination time 

selected was 550000 hours as it surpasses the modes of the 

two distributions. Then, 𝑡 increments gradually with a step 

size of 100000 hours until it reaches its maximum at 1150000 

hours. The simulation process is described through the 

following steps: 

(1) A completely random sample of size n=15 is generated 

from both distributions having parameters reported in 

Table 6.  

(2) The censored samples are formed by selecting the values 

that are less than or equal to t in step (1).  

(3) The censored sample fraction 𝑟/𝑛 is calculated, where r 

denotes the size of the censored sample determined in 

step (2). 

(4) The MLEs of the parameters from the complete samples 

in step (1) are computed using Eq. (5) and Eq. (11) of 

Weibull and lognormal distributions, respectively.   

(5) The MLEs of the parameters from the censored samples 

in step (2) are computed using Eq. (6) and Eq. (12) of 

Weibull and lognormal distributions, respectively.   

(6) The MLEs of the MTTF are calculated by substituting 

the parameters' MLEs computed from the complete 

samples in step (4) in Eq. (3) and Eq. (9) of Weibull and 

lognormal distributions, respectively.    

(7) The MLEs of the MTTF are computed by substituting 

the parameters' MLEs computed from the censored 

samples in step (5) in Eq. (3) and Eq. (9) of Weibull and 

lognormal distributions, respectively.    

(8) The relative error in estimating the MTTF 𝜖𝑡  is computed 

using Eq. (30) for both distributions.  

(9) The efficiency of censored sample 𝜏𝑡  is calculated by 

substituting the parameters' MLEs of the censored 

samples in step (5) in Eq. (31) for both distributions.

  

(10) Steps (1-9) are repeated M times, M=5,000 and the 

average values of the figures 𝑟/𝑛, 𝜖𝑡  and 𝜏𝑡  are 

calculated and reported in Table 7. 

According to Table 7, the efficiency of the censored sample 

𝜏𝑡  increases to one as the time t increases, while the relative 

error in estimating the MTTF 𝜖𝑡  decreases to zero with t. In 

addition, the estimated values of the MTTF from the 

complete samples 𝜃𝑐𝑜𝑚  are close to that of complete 

experimental sample 𝜃 reported in Table 6, and the estimated 

MTTFs of the simulated censored sample 𝜃𝑐𝑒𝑛(𝑡) converge 

to 𝜃𝑐𝑜𝑚  as 𝑡 increases. Based on the values of 𝜏𝑡  and 𝜖𝑡, 

lognormal significantly exhibits higher suitability towards 

censoring than Weibull, despite the similar sample size 

percentages 𝑟/𝑛 of both distributions. Weibull would start to 

deliver comparable estimates to lognormal only at very late 

termination times at which almost all objects are observed, 

and the censoring becomes useless. 

It is clear from Table 7 that the censored samples of the 

lognormal distribution are more efficient in estimating the 

MTTF; this can be easily seen by observing that 

𝜏𝑡(𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙) > 𝜏𝑡(𝑊𝑒𝑖𝑏𝑢𝑙𝑙)                                    (30)               

and 

 

Table 7. Performance comparison of type I censored samples under operating conditions 

  
Weibull 

 
Lognormal 

t  r/n 𝜏𝑡 𝜃𝑐𝑜𝑚 𝜃𝑐𝑒𝑛(𝑡) 𝜖𝑡 
 

r/n 𝜏𝑡 𝜃𝑐𝑜𝑚 𝜃𝑐𝑒𝑛(𝑡) 𝜖𝑡 

550000 0.490 0.407 566776 678406 0.199  0.513 0.519 598451 620929 0.114 

650000 0.651 0.437 567006 665959 0.174  0.659 0.666 597990 609588 0.067 

750000 0.788 0.480 567541 643884 0.133  0.768 0.772 598924 607466 0.048 

850000 0.888 0.585 567302 618608 0.088  0.847 0.849 597853 603199 0.032 

950000 0.947 0.722 567851 598649 0.053  0.900 0.900 596781 601223 0.022 

1050000 0.979 0.844 566985 581788 0.025  0.934 0.933 596632 599910 0.016 

1150000 0.993 0.924 567375 573418 0.010  0.956 0.955 598162 600278 0.011 
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𝜖𝑡(𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙) < 𝜖𝑡(𝑊𝑒𝑖𝑏𝑢𝑙𝑙),                                       (31)            

for almost all termination times t, though the censored sample 

size of the lognormal distribution is in general comparable or 

less than that of the Weibull distribution. 

7. Conclusion 

Based on a comprehensive statistical analysis, it is 

concluded that lognormal significantly outperforms Weibull, 

which has been previously adopted as a life distribution of the 

commercial concentrator lattice match triple-junction 

GaInP/GaInAs/Ge. The best results in estimating the 

distribution parameters can be achieved by the censored 

samples from lognormal distribution compared to those of the 

Weibull distribution. Therefore, this work improves the 

estimates of the mean time to failure and warranty times of 

this particular family of solar photovoltaic cells. The 

generalization of these results to other solar cell types is under 

construction. 
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