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Abstract- Continue emphasis in mitigating the environmental impacts of fossil generated electrical energy has fuelled interest 

in sustainable and renewable energy; as a result of this interest, renewable energy penetration into power utilities energy mix 

has increased significantly. Two major issues delaying further increase of renewable energy are supply intermittency and 

availability. Prediction of renewable energy availability can never be over emphasized. In this paper we propose a simple 

nonlinear least square piecewise model to predict output power of a small Canadian wind farm. The proposed model 

decomposes the wind speed sweeping the wind turbine into three major speed groups, slow, moderate and fast speed. The 

dynamics of the wind speed in each group defines the model and the prediction error performance. We showed that the 

piecewise model outperformed the manufacturer’s power curve that is traditionally uses by wind farms. We present typical 

predictions for Fall, Winter, Spring and Summer and compared results from our proposed model to the manufacturer’s power 

curve. The piecewise model as well as the manufacturer’s power curve performances are both related to the skill of the wind 

speed estimator, accurate wind speed estimates will result to excellent forecast for both models. 

Keywords- Wind power technological model building, Wind power forecasting, statistical analysis. 

 

1. Introduction 

Environmental concerns, increase in the depletion of 

non-renewable resources and security concerns continue to 

motivate advances in renewable energy. Wind power has 

attracted much attention as a promising renewable energy 

resource. The potential benefits of incorporating wind energy 

into our energy mix, include curbing emissions and reduction 

in non-renewable fuel consumption. Wind energy is one of 

the cheapest available renewable energy sources and the 

industry is experiencing a period of rapid growth worldwide. 

While the real technology for harnessing wind energy 

has matured over the years, wind turbine output power 

continues to be intermittent - intrinsically depending on the 

availability and the variability in the wind speed [1]. Utility 

scale integration of wind power normally presents some 

challenges to utility system dispatchers in the form of 

availability and reliability [2], [5]. The electricity commodity 

market operates on a one or two day’s ahead generating unit 

commitment. The commodity market requires power 

suppliers to commit their commodity 24 hours ahead of the 

time, mandating market participants including suppliers to 

guarantee the availability of their commodities. It is obvious 

that wind energy based market participants cannot guarantee 

their commodity due to high uncertainties and the inherent 

stochastic nature of wind speed. 

Wind power is a complex function of the wind speed, air 

density and turbine sweep area. Efforts to improve wind 

power forecast includes [3, 6-8] and [10]. In [3] the authors 

discussed a short-term probabilistic wind power forecast, the 

key discussion is optimal bidding strategy focusing on 

forecast uncertainty. In [12] the authors presented a brief 

overview of wind power forecasting models and their various 

applications in the electricity market place. The authors 

noted the benefits of integrating wind power forecast into 

overall system operations from operating reserve to unit 

commitment and dispatch decisions. In [6] and [7] the 

authors discussed various statistical approaches that uses 

historicaldata to train forecasting models. In [8], the authors 

discussed a model that predicts one hour ahead wind power 
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outputs.  In [13], the authors formulated the power system 

unit commitment problem as probabilistic, modelling 

expected unserved energy as probability distribution of 

forecast errors of wind and loss of load. In [16], the authors 

proposed conditionally parametric ARX-models that uses 

adaptive and recursive parameter estimation techniques. 

Their proposed model produced superior estimates when 

compared with estimations based on conventional 

techniques. In [20], the authors described a method that 

accounts for both the interdependence structure of prediction 

errors and the distributions of wind power production. 

Prediction errors were converted to multivariate Gaussian 

random variables, using covariance matrix to summarize the 

interdependent structure. In [22], the authors used Gaussian 

Processes to predict one-day-ahead short-term wind power. 

The authors applied Gaussian Processes to the outputs of a 

Numerical Weather Prediction model. Standardizing the 

protocol for the evaluation of short-term wind power 

prediction was proposed [4], a number of reference 

prediction models were described including a comparison of 

their performance evaluation. Advanced statistical, physical 

and combined modeling approaches were discussed [9], 

methods for online uncertainty and risk assessment 

prediction were presented and discussed. Our analysis of the 

wind power function suggests a major variable with 

significant influence over the turbine power is simply the 

wind speed. The turbine sweep area is rather a constant, and 

the air density has no easily definable correlation with the 

turbine power. The air density is normally included in the 

manufacturer’s power curve; however our statistical analysis 

concluded that at this time, there is no measurable correlation 

between the air density and the turbine output power. 

2. Methodology 

Scotia Weather Services Incorporation [SWIS] supplied 

the data used for this research, the data belong to a wind farm 

in Prince Edward Island. For the purposes of this research, 

we rearranged the data into seasons from January 1
st
 2011 up 

to April 30
th

 2013. We condensed the original ten-minute 

intervals data into hourly readings by simple averaging. 

Compiling all measurements on a season-by-season basis, 

the seasonal wind speed was then plotted against the output 

power, producing the familiar wind power curve shown 

Figure 1 below 

 

Fig. 1. Output Power vs Wind Speed (Turbine 1, Winter 

2011-2012) 

Figure 2 below plots a filtered version of Fig. 1 with 

recording errors removed.  

 

 

Fig. 2. Negatively affected data has been treated 

The data appears to form a sigmoid function, with one of 

the possible forms being: 

 ( )  
   

√    
                                                           (1) 

Where P(v) is the power output as a function of wind 

speed in watts, v is the average wind speed in m/s, and a, b, 

and c are real constants. Equation (1) is a typical symmetrical 

“s” curve with horizontal asymptotes at both a and c, a 

hypothetical mathematical model for wind turbine output 

power. We observed that rotating the power curve 180° 

about its center point, two distinct regions failed to overlap 

as would be expected for a sigmoid model. 

Figure 3 below shows the plot of the original data in 

blue, and the rotated data about the center axis in red, the plot 

demonstrates the subtle asymmetry of the wind speed power 

relationship. Two distinct areas stand out where the rotated 

curve does not match the behavior of the original curve. In 

case 1, the “ramp down” time is less sharply defined than its 

inverse in red (ie, ramp up time). In case 2, as one might 

expect, there exists a higher variance in the wind-speed 

relationship at lower wind speeds than at higher. Hence we 

conclude, while a sigmoid model was certainly relevant, 

piecewise models based on behavior-based regions could 

potentially produce more accurate predictions. 

 

Fig. 3. Seasonal graph for Fall 2012 behavior. 

3. Data Consideration 

When inspected, it was found that seasonal data sets 

held the highest rate of similarity/correspondence for 

purposes of prediction. In essence, the behavior of the 

wind/power curve for the fall of one year had far less 

variance compared to the fall of the next year than for two 

weeks or months being compared that are a year apart. 

Attempts to linearized the sigmoidal relationship between the 
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wind speed and turbine output power was not successful. 

None of the seasons matched a sigmoid function of any type 

without a slight degree of deviation, Fig. [4] below support 

this assertion: 

In Figure [4] section 1 demonstrates the decreasing 

reliability for the linear regression for higher wind speeds. 

Section 2 describes the “lip” created by the constant or zero 

power value for wind speeds below 3 m/s . If we remove the 

outliers shown dotted around the primary curve above, these 

two sections accounts for the deviations noted in Figure [3]. 

 

Fig. 4. Linearization of Output Power vs Wind speed 

The nature of two primary behavioral regions which 

potentially vary across seasons called for a piecewise 

approach. For the purpose of this research, we divided the 

Sigmoid Function into four primary sections as shown in Fig. 

5. 

In Figure 5, section 1 and 4 represent the constant power 

regions – the asymptotes of the wind-speed to power 

function. Sections 2 and 3 represent the “acceleration” 

regions of the power curve, where the power/wind speed 

ratio is increasing and decreasing respectively. Since the rate 

of increase in section 1 and the rate of decrease in section 3 

are not equal (Figure [5] is "steeper" near the maximum and 

more level near the minimum), we felt the need treat these 

sections separately to enhance model accuracy. We inspected 

the sigmoidal function locating the inflection point as the line 

separating these sections. Further analysis suggested that 

wind speed less than 5 m/s is very unstable and turbulent. 

These range of wind speeds result in undispatchable output 

power, hence we separated these perceived undispatchable 

power from dispatchable power. 

 

Fig. 5. Four Behavioral Regions of Turbine 1's Power Curve 

for Winter 2011-2012 

4. Piecewise Models 

Analysis of the real wind turbine power versus the wind 

speed indicates some consistency with the following 

assumptions.  [1] For wind speed less than or equal to 3.5m/s 

the output power could be set equal to 500 watts minimum 

output or approximated to zero. [2] For wind speed greater 

than 16 m/s, the output power could be set equal to 500 

kilowatts turbine maximum output power. These two 

observations simplified our model fitting problem allowing 

us to decompose the sigmoidal function into three flexible 

piecewise compartments. 

A regression model is treated as linear model if the 

model is a linear combination of the parameters, i.e., 

 (    )  ∑     (  )
 
                                                (2) 

here the parameters            are functions of    ; and 

    
  (    )

   
    (  )                                                (3) 

It is obvious in our case that the least square estimator, 

in the context of a random sample   is given by 

 ̂  (   )                                                              (4) 

5. Results and Analysis 

We fitted deterministic linear, quadratic, and cubic 

models the following wind speed groups, greater than 3.5m/s 

and equal to 5.0 m/s, greater than 5.0 m/s and equal to 9.0 

m/s, greater than 9.0 m/s and equal 16.0 m/s. We also fitted 

other models to these wind speed groups such as the 

weighted least square and the nonlinear multivariate models. 

These other models produced results that are comparable to 

the single variable models based on wind speed alone. The 

weighted least square model used the wind speed and the air 

temperature as independent variables. Heteroscedasticity 

observed in the relationship between the air temperature and 

turbine output power, encouraged us to treat the air 

temperature as the weighting function. The nonlinear 

multivariate models used a combine wind speed and the 

temperature, wind speed air pressure, wind speed dry-bulb 

temperature, and wind speed air density with little or no 

success. We were not that much surprised in these outcomes, 

since our data analysis section supports no definable 

correlation between the turbine output power and these other 

variables. 

Figure 6 to Figure 11 shows typical plots of real and 

predicted power, and prediction errors for each of the three 

wind groups for Turbine #1, the combined data is plotted in 

Figure 14.  
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Fig. 6. 

  

Fig. 7. 

 

Fig. 8. 

 

Fig. 9. 

 

Fig. 10. 

 

Fig. 11. 

As mentioned earlier, we did not attempt fitting curves 

to sections 1 and 4 of the decomposed sigmoidal function, 

these sections we regarded as the cut-in and cut-out wind 

speeds. At wind speed less than 3.5 m/s, our analysis of the 

sigmoidal function suggest insufficient torque to make the 

turbine blades rotate hence negligible output power. At wind 

speed greater than 16 m/s, the turbine power reaches it 

maximum output capacity, thus leveling out until the cut-off 

wind speed. 

We further observed that within the wind speed window 

3.5 m/s and 16 m/s, the wind turbulence becomes very 

significant as the wind speed picks up from the cut-in speed 

of 3.5 m/s and gradually decreases as the wind speed nears 

the turbine peak speed of 16 m/s.  This is clear from the high 

variability of the turbine output power in the lower wind 

speed regions; where the turbine output power fluctuates in 

synchronisms with the wind speed fluctuation. 

6. Discussions and Error Analysis 

The simulations and predictions displayed above show 

some interesting outcomes. We observed that wind speeds 

between 9-16 m/s produced very remarkable results when 

comparing the predicted and the observed values. Both the 

quadratic and cubic models fitted to this range of wind speed 

produced estimation and prediction errors less than 10% 97% 

of the time. Further analysis linked the exceptional 

performances of these models to the stability of the wind in 

this wind speed window. The dynamics of the wind 
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sweeping the turbine becomes more stable as its speed builds 

up. Thus the relationship between the wind speed and the 

turbine output power in this wind speed window is very 

stable and consistent. 

For wind speed greater than 5m/s but less than or equal 

to 9m/s we observed estimation and prediction errors less 

than 14% 90% of the time. We further observed that the wind 

dynamics in this wind speed window are somehow unstable. 

Thus, the wind speed turbine power relationship is somehow 

turbulent. This is responsible for the mild dispersion 

observed in the wind speed turbine power relationship for 

this wind speed regime.    

For wind speed greater than 3.5m/s but less than or equal 

to 5m/s, these models produced estimation and prediction 

errors less than 14% 80% of the time. Again we observed 

that the wind dynamics for this region of the wind speed 

were highly unstable, and again demonstrated dispersion 

when charted. The error associated with the models fitted to 

this regime of wind speed is a testimony of this dispersion. 

Figure 12 to Figure 15 compares the predicted output 

power from the proposed piecewise model with the predicted 

output power using the manufacturer’s power curve for the 

four seasons of 2012. Figure 12 to Figure 15 below plots the 

predicted power using our proposed method and the method 

based on manufacturer’s power curve four the seasons of 

2012. The manufacturer's power curve is in green over the 

data, and the piecewise is in black. 

 

Fig. 12. Piecewise vs. Manufacturer's Model over Spring 

2012 Data 

 

Fig. 13. Piecewise vs. Manufacturer's Model over Summer 

2012 Data 

 

Fig. 14. Piecewise vs. Manufacturer's Model over Fall 2012 

Data 

 

Fig. 15. Piecewise vs. Manufacturer's Model over Winter 

2012 Data  

The above Figures demonstrates that the piecewise 

models are able to shape themselves to the unique power 

curves for each season. The % improvement of the piecewise 

models is given by equation (5): 

              
                                                

                          
           (5) 

Table 1 list the average error for both models and the 

percentage improvement obtained by using the piecewise 

model as against the manufacturer’s power curve for the year 

2012.  

Table 1. Average Error for Turbine #1 2012 Data  

Year Average Error kW 

2012 
Manufacturer’s 

Curve 

Piecewise 

Model 
% Improvement 

Spring 10,500 7,190 31.63 

Summer 12,100 7,160 40.76 

Fall 11,190 8,390 25.01 

Winter 12,955 9,720 24.95 

Table 1 show the robustness of the piecewise model over 

the manufacturer’s power curve. From Figure 12 to Figure 

15, the piecewise over all better performance of the proposed 

model over the manufacturer's power curve stems from the 

regions of higher wind speed. At the wind speed window 

greater than 5 m/s and up to 16 m/s, the wind speed output 

power relationship approximate quadratic, piece-wising this 

window enhances its performance, however it increases 

computational time. 
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7. Conclusion and Recommendation 

This research has demonstrated that a simple piecewise 

single variable least square model has the potential to predict 

the output power of a wind turbine within acceptable error 

margin. We compared the proposed model with the 

manufacturer’s power curve and the results presented and 

discussed. The results indicate that the piecewise model has 

superior results when compared with the power curve. The 

results for both the proposed method and the power curve 

depend on the accuracy of the method used to estimate the 

wind speed, thus our next effort will focus on developing 

wind speed prediction model (s). 
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