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Abstract- The extensive penetration of renewable resources and utilizing advanced energy management techniques as well 

as enabling demand response programs (DRPs), especially in microgrids and active distribution networks, has had an 
impressive impact on the operation of such grids. Thus, with respect to the active and influential role of distribution grids in the 
restructured environment and the objective of achieving optimal operation of microgrids, energy management in this new 
environment requires more comprehensive analytic studies and rigorous researches. In this regard, the present research 
proposes a new strategy of optimal energy management and the subsequent day-ahead scheduling of a microgrid in the 
presence of micro compressed air energy storage (MCAES) and considering the uncertainties of renewable energy resources. 
The minimization of operation costs of energy storage facilities, environmental emission, the costs corresponded with the 
energy not supplied (ENS) and excess generation capacity are the main objectives of this study while the load satisfaction 
constraints are imposed. The technical constraints of distributed generation resources and energy storage facilities are imposed 
on this optimization problem. Besides, the execution of demand-side management programs is modelled to flatten the demand 
curve and to close the operational condition on the most optimum point. Employing the teaching-learning-based optimization 
(TLBO) algorithm, the proposed method is simulated for a test microgrid. The simulation’s results show that the utilization of 
MCAES facilities and executing DRPs have been concluded to the mitigation of generation cost, alleviation of emission, and 
reduction of ENS and excess generation capacity of the microgrid. 

 

 Keywords- Optimal energy management, Renewable energy resources, Environmental constraints, Energy storage, 
Demand response programs, Uncertainty.    

1. Introduction 

In some locations, where the expansion of the main 
power system is not technically or economically viable, the 
islanding microgrid scheme is suggested. According to the 
report issued by international energy agency [1], well above 
1 billion people do not access to the electricity networks. In 
order to supply such loads, two options exist for power 
system planners and engineers. The first is the expansion of 
the transmission network, and the second is the execution of 
an isolated microgrid. Some obstacles, such as high prices of 
fuel and emission of greenhouse gases restrain the use of 
fossil fuels. Hence, the implementation of a renewable-
oriented isolated microgrid is a proper solution for these 
restrictions. Solar and wind energy are highly dependent on 
weather condition that makes them have inevitable 
uncertainties. Hence, the utilization of an energy storage 

facility is indispensable. In [2], the economic and reliability 
concepts of the microgrids are investigated. In [3], the 
optimal placement of distributed generation (DG) resources 
is proposed, and suggested strategies are assessed. The 
increase of use of combined heat and power (CHP) DGs is 
also described in [4], in which it is objected to improving the 
reliability of microgrids. The short-term generation 
scheduling for microgrids is also evaluated in [5]. In [6], a 
multi-objective optimization is conducted to deal with the 
energy management of microgrids while the economic and 
environmental restrictions are taken into account. Some types 
of DG technologies such as internal combustion engines, gas 
turbines, micro-turbines, fuel cells, photovoltaic cells, and 
wind turbines have had immense pervasiveness due to 
tremendous technological growth as well as being eco-
friendly [7]. Hence, the usage of fossil-based generators in 
distribution networks is not favoured economically and 
environmentally. The microgrid structure is an appropriate 
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platform for integration of DGs [8]. In [9], the considered 
microgrid consists of a set of loads and a set of small-scale 
resources as a controllable system, which provides thermal 
and electrical power for a specific region. In [10, 11], the 
benefits of a microgrid scheme, such as the increase in local 
reliability (load indices), reduction of power losses in 
supplying branch, local voltage improvement, and 
compensation of voltage drop are described. The microgrid is 
capable of operating in two modes of being connected to the 
upstream network or isolated [11]. The precise predictions 
indicate that 25% of total generation till 2040 will be 
provided by wind farms. In addition, 20% will be produced 
by chemical cells, and 30% will be generated by solar panels 
by 2040 [12]. A vast network is composed of several small 
grids, in which DGs are installed in the vicinity of loads. 
Such a structure enables the capability of extensive use of 
renewable energy resources [13]. The amount of electrical 
power generation by renewable resources depends on the 
ambient condition of the DG’s installation location, such as 
solar radiation or wind speed. Thus, the intermittency of 
these resources necessitates the utilization of energy storage 
facilities to meet the demand. Batteries are the usual option 
to store electrical energy. However, they are unable to store 
electricity for long-term applications due to their small-scale 
storage capability and being crashed due to inactivity [14]. 
The compressed air energy storage facility is one of the 
emerging technologies which has assumed special 
importance in recent years [15-17]. In this scheme, the 
excess generated power during off-peak hours is being used 
to compress the air into a natural or artificial reservoir. The 
compressed air can be stored in natural salt caverns or metal 
tanks and must be expanded to drive a turbine connected to a 
combustion gas turbine when it is needed. Nowadays, in 
order to shift the peak power to the off-peak hours, which 
consequently leads to a flatter load profile, the demand 
response programs (DRPs) are widely designed [18]. One of 
the most prevalent kinds of DRPs is “time of use” [19]. This 
program causes the load shifting from peak hours to off-peak 
hours that makes the load profile flatter. During peak hours, 
due to high power consumption, renewable resources and the 
storage device may be unable to meet the demand, which can 
be led to an increase in the cost of energy not supplied. The 
consumers tend to change their consumption time to off-peak 
hours to reduce their energy costs [20]. This segregation can 
also be performed for the hours of a day, the days of a week, 
or seasons of a year. In [20], it is supposed that at each time 
interval, only 9% of the load can be shifted to other intervals. 
However, in our study, the maximum load shifting rate of 
15% can be imposable. In this research, the novel strategy of 
use of micro compressed air energy storage (MCAES) with 
calling DRPs into the microgrid in islanding mode is 
investigated. This energy management strategy is designed 
based on the optimum contribution of generation resources 
as well as optimum charging/discharging rate of MCAES 
and battery facilities, which are categorized and evaluated 
through four scenarios. The first scenario is defined so that 
no renewable resources, no storage facility, and no DRP are 
integrated, and the whole demand must be supplied by 
micro-turbines. In the second scenario, renewable resources 
such as wind and solar energies are integrated. In the 3rd 
scenario, the impact of the presence of MCAES unit along 

with renewable energy resources is evaluated. Ultimately, in 
the 4th scenario, the renewable energy resources, the MCAES 
unit, the DRPs are integrated into the model to meet the 
loads. The micro-turbines are committed in all scenarios. The 
targeted objective function is made up of four goals of 
minimization of generation cost of storage devices, 
environmental emission, the costs associated with energy not 
supplied, and the costs correlated with excess generation 
capacity. The solution space of the optimization problem is 
also restricted by load satisfaction constraints, the technical 
limitations of distributed generation resources and energy 
storage facilities. 

2. The modelling of Microgrid’s component 

The targeted microgrid in this paper contains wind 
turbines and photovoltaic cells. In addition, in order to ensure 
the continuous supply of loads, the battery storage unit is 
utilized. As the new strategy for energy management in the 
isolated microgrid, the MCAES facility is committed for 
provision of power while the elastic loads react against the 
price variation with respect to DRPs. Fig. 1 illustrates the 
paradigm of the targeted microgrid. In the following 
subcategories, the microgrid’s components will be explained. 

 
Fig. 1. The structure of the microgrid in islanding mode 

2.1. Wind turbine and the modeling of wind speed 
uncertainty 

The output power of the wind turbine variates 
corresponded with the wind velocity. The past studies such 
as [21-22] show that the wind speed curve in a specific 
region often follows the Weibull distribution. Hence, in this 
study, it is supposed accordingly. The forecasted wind 
speeds are described by their average values. The probability 
density function of the wind speed, which is characterized by 
Weibull distribution, is shown in Eq. (1): 

 (1) 
In the above equation, v, k, and c represent the wind 

velocity, the shape parameter (without dimension), and scale 
parameter, respectively. The truncation and segregation of 
the wind speed distribution records can simplify the problem. 
For each interval, the random variable of wind speed is 
normalized by the mean value of wind speed in Weibull 

( 1) ( )( ) ( ) ( ) , 0< <
kk v cf v k c v c exp v- -= × ¥
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distribution. The truncation point can be enhanced from the 
mean value to the point where the overall coverage is 
achieved. After truncation, the distribution can be divided 
into separate parts, the quantity of which is corresponded 
with the desired accuracy. By integration, the probability of 
each part can be easily calculated. A 5-segment wind speed 
distribution is depicted in Fig. 2. 

 
Fig. 2. The probability distribution of wind speed 

By a specific wind speed distribution and a wind to 
power conversion function, the wind power distribution can 
be obtained. In this study, the power conversion function is 
defined as Eq. (2) as below [23]: 

 (2) 

Where, w, wr, vi, vr, and vo denote the output power of the 
wind turbine in kW, the relative power, the cut-in wind 
speed, the rated wind speed, and the cut-out wind speed, 
respectively. 

2.2. The photovoltaic cell and the solar radiation 
uncertainty modeling 

In fact, the output power of the photovoltaic system 
depends absolutely on solar radiation. The hourly solar 
radiation in a specific region can appropriately be modelled 
by a bi-exponential distribution as it is described in [24-26]. 
It can also be described as a linear function composed of two 
exponential functions stated in [27]. 

 
Fig. 3. The probability distribution of solar radiation  

 (3) 

Where, g shows the radiation density in kW/m2, w 
indicates on weighting factor, k denotes the shape parameter, 
and finally, c1 and c2 show the scale parameters. Similar to 

the wind speed distribution model, solar radiation 
distribution can also be truncated [28]. A solar radiation 
distribution is depicted in Fig. 3.  

By a specific probability distribution of solar variation for 
a specific region along with the solar radiation to power 
conversion function, the distribution of photovoltaic power 
generation can be achieved. The employed conversion 
function in this study is figured out by Eq. (4) as below [29]: 

 (4) 
Where p denotes the output power of the photovoltaic 

unit in kW, ηpv describes the efficiency percentage, and spv 
indicates the entire photovoltaic panel surface in m2. 

2.3. Micro-turbine 
The micro-turbines are the small-scale combustion 

turbines, which can procure more efficiency by using the 
heat of exhausting gases in comparison with diesel 
generators. A micro-turbine is a fast-response generator that 
is capable of tracking the load variations within its maximum 
and minimum generation range. The micro-turbines are also 
regarded as quick-start units to be used as non-spinning 
reserve capacities. In the proposed model for micro-turbines, 
the fuel costs, operation, and maintenance cost and technical 
constraints are taken into account. The fuel cost of micro-
turbines can be described by a quadratic function of output 
active power as it is shown in Eq. (5): 

 (5) 

In the above equation, PGMT shows the output power of 
each micro-turbine, f1G, f2G, and f3G are the constants relevant 
to the micro-turbine. The amount of exhausting gases of 
micro-turbine is proportional to fuel consumption [30, 31]. 
These emissions can be calculated by a quadratic function. In 
this study, the emission cost of the microgrid is neglected.   

2.4. Battery model 
Eqs. (6) to (14) represents the technical constraints of the 

battery unit [32-34]. Eq. (6) shows the initial energy stored in 
the battery. Eqs. (7) and (8) express the minimum and 
maximum storage levels of the battery. Besides, the 
maximum charging/discharging rates of the battery are 
defined by Eqs. (9) and (10). The operational limitations of 
battery storage are stated in Eqs. (11) and (12). This 
restriction is imposed by Eq. (13). Ultimately, the dynamic 
energy model of the battery at each time is shown by Eq. 
(14).  

 (6) 
 (7) 
 (8) 

 (9) 
 (10) 

 (11) 
 (12) 

 (13) 

 (14) 
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In the above equations, SOCt0 is the energy of the battery 
at the beginning interval. SOCinitial is the initial energy of 
battery. SOCmax and SOCmin represent the maximum and 
minimum energy of battery. Pchargemax and Pchargemin stand for 
the maximum and minimum power consumption rate while 
charging. Pdiscmax and Pdiscmin are the maximum and minimum 
discharge rates. ηchB and ηdiscB are the battery efficiency of 
charging and discharging. Utcharge and Utdisc stand for the 
binary variables of state of battery for charging and 
discharging. SOCt is the state of charge of the battery at hour 
t. In addition, Ptcharge and Ptdisc show the power consumed or 
generated while charging or discharging processes at the 
interval of t. 

2.5. Micro Compressed Air Energy Storage (MCAES) 
model 

There is a fast-paced incremental interest in energy 
storage facilities due to the ever-growing penetration of 
intermittent renewable sources in both the supply-side and 
demand side. So far, some innovative emerging storage 
technologies are offered to cope with this stochastic nature of 
uncertain resources. However, compressed air energy storage 
(CAES) is regarded as one of the most practically viable and 
economically sensible solutions. A CAES system 
fundamentally resembles pumped-hydro energy storage 
facilities in terms of applications, storage capacity, and 
output. In a CAES scheme, the ambient air is the vehicle, in 
which the energy is stored during the compression process. 
Then, the compressed air is stored in underground salt 
caverns or small-scale aboveground facilities. The high-
pressure air is expanded and heated toward a combustion 
turbine to generate electricity. Preferably, the storage unit 
owners and power system operators would like to store 
power during off-peak hours and deliver it to the grid back 
during peak hours to postpone the commitment of expensive 
units. When the storage of high volume of air in the 
underground reservoirs is not viable due to geological or 
economic reasons, the micro compressed air energy storage 
(MCAES) is a small-scale alternative, but over the earth's 
surface. The independence from the geological condition is 
an appealing feature of MCAES systems, which makes it 
viable to be installed wherever is more suitable from the 
technical point of view (e.g., in the vicinity of volatile wind 
farms or intermittent solar parks). MCAES facility has been 
usually used so far for maintaining uninterruptible power 
supply. High reliability, fast response capability, operational 
simplicity, reasonable generation cost, and high efficiency 
are the most salient characteristics of MCAES systems. 
Unlike a large-scale CAES scheme, in which compression is 
usually performed in two consecutive stages including 
intercooling, in an MCAES scheme, it is necessary to keep 
the structure simple and continuously and simultaneously 
achieve high-efficient performance. Hence, compression and 
expansion stages require to be closer to isothermal process 
than to adiabatic process. In an adiabatic-oriented CAES 
system, a vast amount of exergy is destructed due to a broad 
temperature difference between the beginning of the existing 
processes and the end of them, as well as a low recovery rate 
in the recuperator and hydraulic motor. In contrast, an 
isothermal process minimizes exergy losses and procure the 
opportunity to fulfil the desired temperatures after 

compression and expansion processes through mass flow 
regulation in order to satisfy the thermal loads. Therefore, the 
isothermal MCAES scheme is more efficient compared to 
other MCAES schemes and can be utilized in decentralized 
energy networks. In order to achieve a quasi-isothermal 
compression process, a large amount of water (or some other 
liquids) can be injected in the compressor to absorb the 
dissipating heat. Then the air-water (gas-liquid) mixture must 
be separated, and the stream of air must be cooled down to 
reach ambient temperature. Then the air is led to the storage 
tank. In parallel, by enjoying a hydraulic motor, the energy 
recovery practice from high-pressure water is done. 
Similarly, the water stream must be cooled down to be 
prepared for recirculation. In the expansion process, unlike 
the conventional CAES scheme, the air stream preheating 
measure in a combustion chamber or in a heat exchanger 
before entering into the turbine is not required. In the 
expansion stage, the exhausted air at the outlet of the turbine 
can be utilized to meet cooling loads in MCAES scheme. A 
quasi-isothermal compression process or expansion process 
can be regarded as a polytropic process model as can be 
shown in Eq. (15). The change of gas temperature during a 
polytropic process is given in Eq. (16): 

 (15) 

 (16) 

In a quasi-isothermal compression process or expansion 
process, the change in the polytropic index n can give the 
possibility of control of mass flow rate for the injected liquid 
(especially water) that this matter makes it viable to match 
the temperature after compression stage to the heating 
temperature needed or the temperature after expansion stage 
to the cooling temperature needed. Hence, the ideal 
compression work (w+c,ideal) and expansion work (w-c,ideal) can 
be defined as follows. Besides, r shows the specific gas 
constant. 

 (17) 

 (18) 

Therefore, isentropic efficiency (ηc, ηe) can be expressed 
as Eqs. (19) and (20), where wc+ and we- stand for actual 
compression and expansion work values. 

 (19) 

 (20) 

The heat transfer rate from the gas state to the liquid state 
during compression (Q-c) and from the liquid to the gas state 
during the expansion process (Q+c) can be calculated by the 
following equations in kJ. In addition, hin and hout represent 
the specific enthalpy of input and output fluid, respectively, 
in kJ/kg, and Ma stands for the mass of flow of air. 
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In order to assess the energy efficiency, the following 
equations can be adopted. Eq. (23) indicate the storage 
efficiency, in which ηp is the baseload efficiency of the 
charging plant and Q represents the lower Calorific value. Ein 
and Eout are electric power input and output in kJ. The term 
Qηp expresses the electric energy that would be generated if 
the corresponding fuel consumed in MCAES is burned in 
another plant. Eq. (24) delineates the heating performance of 
the MCAES scheme considering the dissipated heat of the 
compression process. In this equation, Qhc stands for the total 
compression’s dissipated heat that is composed of 
summation of dissipated heat during compression (Qc) and 
after compression (Qac). In order to assess cooling 
performance, without any fuel usage, Eq. (25) is defined, so 
that heat extraction from the ambient air for MCAES system 
is taken into consideration. In this equation, Qce stands for 
total extraction of heat from the source of the ambient air that 
is made up of two components of extracted heat during the 
expansion process (Qe), and heat extraction after expansion 
process (Qae). The overall thermal efficiency can be 
expressed as Eq. (26). Fig. 4 portrays a general schematic 
overview of MCAES system. 

 (23) 

 (24) 

 (25) 

 (26) 

 
Fig. 4. The schematic of a two-stage MCAES system 

In addition, by the employment of the following 
equations, the exergy of the quasi-isothermal MCAES model 
can be addressed as follows. Eq. (27) shows the general 
exergy balance, in which Ė+ and Ė- show the exergy transfer 
rate to and from the system by work, heat, and mass in kW, 
and the exergy destruction is shown by L̇ in kW. The exergy 
transfer rate to the system by the source of heat (E+q) is 
shown in Eq. (28). T stands for temperature in K. The exergy 
transfer rates, to and from the system, by the source of mass 
(E+y, E-y) are defined as (29), where k shows the specific flow 
exergy in kJ/kg, and s indicates the specific entropy in 
kJ/(kgK). 

 (27) 

 (28) 

 (29) 

For the flow of air (gas flow), Eq. (30) can be presented. 
In this equation, P stands for pressure, and cp is the specific 
heat. 

 (30) 

In the case of the flow of liquid, Eq. (31) can be used 
instead, and the volumetric changes can be neglected. 

 (31) 

In the case of the gas-liquid compression process, the 
exergy balance can be modified as Eq. (32). In below, E-ya 
and E-yl are the exergy transfer from the system by the flows 
of air and liquid. 

 (32) 

Thus, the exergy efficiency of the compression process 
can be defined as below with respect to the Second Law 
efficiency. In a similar way, the exergy efficiency of the 
expansion process can be formulated as Eq. (34). 

 (33) 

 (34) 

The overall exergy efficiency of the entire MCAES 
system with a quasi-isothermal process can be expressed as 
follows [35-36]: 

 (35) 

2.6. Demand response model  
In this paper, the employed DRP is a kind of time of use. 

The goal is to smooth the load curve by shifting the peak 
load to off-peak and mid-peak hours, which can be led to a 
decrease in the operation cost of the power system. The time-
of-use program can be modeled as demonstrated in Fig. 5.  

According to Fig. 5, and with respect to the selected 
DRP, only a certain part of the loads can be shifted to other 
periods by consumers. The mathematical formation of this 
concept is represented in Eqs. (36) and (37), which is shown 
below [37]: 
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equivalent to the increasing load in other periods, and the 
summation of each one must be exactly the same for the 
entire time horizon. The increasing load must be lower than a 
certain percentage of the baseload that is imposed by Eq. 
(39). Finally, the percentage of load reduction or increase 
must be lower than a certain amount that is specified by Eq. 
(40) and (41). This percentage is assumed to be 15% in this 
study. 

 
Fig. 5. The load’s model regard to DRP 

 (38) 

 (39) 
 (40) 
 (41) 

In the above, LoadD(t) represents the forecasted demand 
at hour t, DRmax and incmax are the maximum percentages of 
load that can be reduced or increased. ldr(t) is the load 
reduction rate. Loadinc(t) is the maximum increasable load. 
inc(t) is the percentage of maximum increasable load. 
LoadDR(t) is the load with consideration of demand response 
programs. In addition, DR(t) represents the amount of load 
reduction. 

2.7. The energy not supplied and surplus power models 
In a microgrid, which is operating in islanding mode, the 

outage of load or supply can be occurred planned or 
unplanned, which is inevitable. The former is known as load 
shedding, and the latter is known as curtailment. These two 
planned outages are applied to maintain the power balance 
constraint. If the momentary load is higher than the capacity 
of the summation of renewable energy resources and 
deliverable power storage unit, the grid is not able to satisfy 
the entire load, and it is necessary to impose load shedding. 
On the contrary, if the total load of the microgrid can be 
supplied by renewable resources, and if the storage units are 
fully charged, the excess generation of renewable resources 
must be curtailed. The unsupplied load is denoted by PUN,t 
and excess generation of renewable resources are shown by 
PEX,t [38-39]. 

3. The objective function and the problem’s constraints  
In this study, the main purpose of the new scheme of 

energy management is to obtain the optimum operation 
schedule of storage units (battery and MCAES) subject to 
minimize the operation cost of the microgrid. In the 
following parts, at first, the generation cost of storage units is 
explained. Then the suggested objective function along with 
the necessary constraints to solve the problem by teaching-

learning-based optimization (TLBO) algorithm, are 
introduced.  

3.1. The generation cost  
The generation costs that a microgrid may be encountered 

with can be classified into three main categories of fuel cost, 
start-up cost, and the costs pertaining to power exchange 
with the upstream network. In the present work, in order to 
minimize the total generation cost, the following equations 
are contemplated.   

 (42) 

 (43) 

In the above-mentioned equations, PW, PMT, PPV, PBatt, 
PMCAES, and PGrid stand for the generated active power by 
wind turbine, micro-turbine, photovoltaic panel, battery 
storage unit, MCAES unit, and the amount of exchanged 
power with the power market in kW respectively. In 
addition, Nt represents the total number of intervals within 
the targeted operation time horizon. Moreover, PriceW, 
PriceMT, PricePV, PriceBatt, PriceMCAES, and PriceGrid denote 
the electricity generation cost by wind turbine unit, micro-
turbine unit, photovoltaic panel, battery storage unit, 
MCAES unit, and the market clearing price of the electricity 
market at the purported time interval in $.  

3.2. Emission cost   
The estimation of emission and environmental cost and 

inclusion of it in the objective function of electricity 
generation is a crucial step toward more real optimization of 
prices and costs and clarification in actual pricing, which 
justifies the assessment and inclusion of emission parameters 
in power system operation modeling. This matter facilitates 
the acceptability of the utilization of renewable resources 
which incline the power systems to environmental and 
economic sustainability in the long-term. In this study, in 
order to model the emission, the most prevalent pollutant 
caused by power systems such as NOx, CO2, and SO2 are 
taken into account [40]. Eqs. (44) and (45) show the costs 
pertaining to emission as well as the corresponding objective 
function.   

 (44) 

 (45) 

3.3. The energy not supplied (ENS) cost and excess 
generation cost 

In order to avoid load shedding and forced outage of 
generation units, virtual costs are defined for unsupplied 
power (CUN,t) and excess generation (CEX,t). In this paper, the 
corresponding price with the mentioned costs is supposed to 
be equal to 2 $/kWh [41]. Hence, the objective function 
associated with unsupplied cost and excess generation cost 
can be proposed by Eq. (46): 
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 (46) 

The proposed strategy for energy management is 
subjected to diminish the generation cost as well as emission 
and unsupplied power. The objective function is composed 
of summation of each individual operation cost of battery 
and MCAES (which operate in two modes of charging and 
discharging), the emission cost, the unsupplied energy cost, 
and the cost of provision of excess power. Thus, the final 
objective function of the problem is modeled by Eq. (47), 
which has to be minimized. 

 (47) 

3.4. System constraints  
The suggested objective function has to be minimized 

subject to satisfy the following constraints: 
A. The power balance equation; The summation of 

generated power in the network must be equal to total 
consumed power. This constraint is expressed in Eq. 
(48). It is noticeable that the considered demand in this 
equation is replaced with the demand resulted from 
demand response implication. 

 (48) 

B. The constraints associated with the wind turbine, solar 
cells, and micro-turbine 

C. The technical constraints of the battery storage facility 
D. The technical constraints of MCAES facility 
E. The constraints associated with DRPs 

4. Teaching-learning-based optimization algorithm 
(TLBO) 
The basis of the procedure of TLBO is inspired by the 

teaching of a teacher in a classroom. The quality of learning 
by the students highly depends on the quality of teaching. In 
addition, the review of newly learned items by each 
individual student can effectively improve the learning 
procedure. This idea is the basis of the TLBO algorithm. The 
TLBO consists of two main phases. The first corresponds 
with the impact of the teacher in the learning mechanism. 
The second is associated with the impact of review and 
interactive learning by the students of the class. The pseudo-
code of the TLBO optimization algorithm is described in the 
Fig. 6.   

4.1. Teacher phase 
A good teacher is that one, who tries to improve to 

upgrade the knowledge level of the class to their own 
knowledge level. In practice, the knowledge level of students 
cannot reach the level of their own teacher, but it can 
approximate to that level. The grade of proximity depends on 
the learning ability of the class. This matter is represented by 
Eq. (49), as shown below: 

 (49) 

In the above equation, Tk denotes the teacher at the tth 
iteration, Mk shows the mean of the class at the tth iteration. 

Rt is the teaching factor that can take the value of 0 or 1, and 
its value derived randomly from a specific distribution at 
each iteration. The population at the next iteration is created 
according to Eq. (50): 

 (50) 

In the above equation, is the member of the set at 

the last iteration and shows the member of the set at the 
current iteration. A cost function is dedicated to the new 
member of the set. The value of the cost function in the 
current iteration is compared with the value at the last 
iteration. If the new obtained value is lower than the old 
value, the new member must be replaced with the old one. 

For i =1 to D 
a← select a random integer in {1, 2, ..., NP} 
M(i) = Xa(i);  

End  
For k=1 to NP  

IF r1 < 0.5 // Teaching  
For i = 1 to D  

IF r2 < SP 
TF(i) = round (1 + r2); 
Xnew(i)= Xk(i) + r3×(Xbest(i) – TF(i)×M(i)); 

End  
End For  

Else // Learning each other between learns  
For i = 1 to D 

IF < SP  
r←select a random integer in {1, 2, ..., NP}  
If Xris better than Xk 

Xnew(i)= Xk(i) + r4×(Xr(i) – Xk(i));  
Else 

Xnew(i)= Xk(i) + r5×(Xk(i) – Xr(i));  
End 

End If  
End  

End  
If Xnew is better than Xk 

Xk = Xnew,  
End  

where, r1, r2, r3, r4 and r5 are uniformly distributed random 
numbers between 0 and 1 

Fig. 6. The pseudocode of TLBO algorithm 

4.2. Student phase 
The students can improve their own knowledge level in 

two ways. They can attend the class and learn through their 
teacher. They can also review the course by themselves or 
having interactive reviews by other students. To model this 
fact, it is supposed that each student can randomly have a 
discussion with another student. The corresponding 
mathematical model is expressed in Eq. (51).  

 (51) 

Where, and are the ith and jth members (students). 

 and  are the old and new members of the 
population set respectively. After generation and conducting 
initial calculations relevant to the new member of the set, its 
cost function value must be compared with the 
corresponding value for that member in the last iteration. If 
the new obtained value is lower than the previous, the new 
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member is replaced with the last one. This procedure must be 
repeated for a certain number of iterations. The paradigm of 
the TLBO algorithm is demonstrated in Fig. 7. Further 
information can be found in [42-43]. 

 
Fig. 7. The flowchart of TLBO algorithm 

 
5. Simulation and numerical analysis 

In the following section, in order to evaluate the 
performance of the proposed strategy, a simulation of a 
microgrid including micro-turbine, wind turbine, solar panel, 
battery, and MCAES system is carried out. In addition, the 
impact of DRPs on the consumption behavior of purported 
microgrid’s loads along with its implications on 
corresponding prices are investigated. Finally, various 
operation scenarios are compared to each other, and the 
effectiveness of the model is assessed. Hence, four scenarios 
are introduced as follows: 
• Scenario 1: The microgrid’s required energy is supplied 

only by non-renewable sources. 
• Scenario 2: The microgrid’s required energy is supplied 

by both renewable and non-renewable sources. (without 
the presence of storage units) 

• Scenario 3: The microgrid’s required energy is supplied 
by both renewable and non-renewable sources while 
storage units are integrated into the microgrid’s model. 

• Scenario 4: The microgrid’s required energy is supplied 
by both renewable and non-renewable sources in the 
presence of storage units and with the incorporation of 
DRPs. 

5.1. Input data 
As it is illustrated in Fig. 1, the targeted microgrid as a 

case study includes various sources such as micro-turbine, 

wind turbine, solar panel, battery, and MCAES unit. Figs. 8 
and 9 show the electric demand curve and the maximum 
generated power by wind and solar sources within various 
hours of the considered day. In order to calculate the 
generated power of wind and photovoltaic units, the 
databases of mean wind speed records and solar radiation 
records of a 24-hour period in September corresponded with 
the Yazd city, located in Iran, are employed. The technical 
characteristics of integrated resources, as well as the 
deployed energy storage facilities, are shown in Table 1. 

Table 1. The characteristics of integrated power sources into 
the microgrid 

Unit MT WT PV Battery M-CAES 
Pmin (kW) 200 0 0 -45 -500 
Pmax (kW) 3000 660 1000 45 500 

SUC & SDC ($) 1.1227 0 0 0 0.2975 
Bid ($/kWh) 0.0181 0.025 0.025 0.0223 0.0223 

CO2 (kg/MWh) 720 0 0 10 126.6 
SO2 (kg/MWh) 0.0054 0 0 0.0002 0.00095 
NOx (kg/MWh) 0.23 0 0 0.001 0.04 

 
Fig. 8. The electrical demand curve of the microgrid’s loads 

 
Fig. 9. Maximum generation of wind and photovoltaic units 

 
Fig. 10. The commitment state and generated power of 

micro-turbine unit in the first scenario 

5.2. Scenario 1 
In the first scenario, the short-term scheduling problem 

for the microgrid is surveyed regardless of the presence of 
renewable sources as well as storage facilities and without 
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the integration of DRPs into the model. In this case, the total 
energy demand is supplied by the micro-turbine unit. Fig. 10 
demonstrates the commitment state and generation of the 
micro-turbine unit within the time horizon of the study in 
scenario 1. 

In this scenario, the micro-turbine unit must generate 
38553.32 kW of electrical energy. In order to generate this 
amount of active power, the micro-turbine unit requires to 
consume 463.627 m3 of fuel. In this study, the cost of each 
cubic meter of fuel is supposed to be equal with 0.1 $/m3. 
Therefore, the generation cost of micro-turbine, which is 
composed of fuel cost, start-up and shutdown costs, and 
maintenance cost, will be equal with $698.803. The 
generation of this amount of power entails the emission of 
8952.357 kg of CO2, 30.136 kg of CO, 3.338 kg of unburned 
hydrocarbon (UHCs), 23.621 kg of SO2, and 268.903 kg of 
NOx. The emission of this amount of air pollution incurs the 
cost of $365.168. The cost of energy not supplied and excess 
generation is $0.617. The total operation cost of the system 
in this scenario, including emission cost and energy not 
supplied cost is about $1064.588, which conveys the average 
operation cost of 0.0276 $/kWh. 

5.3. Scenario 2 
In the second scenario, the targeted microgrid is supplied 

by wind, solar, and micro-turbine units. Fig. 11 depicts the 
commitment state and generation dispatch between these 
units in various hours.  

 
Fig. 11. The commitment state and the load dispatch of 

between generating units in scenario 2 

With respect to the problem’s objective function, the 
wind unit and the photovoltaic plant have the most 
generation contribution in the satisfaction of microgrid’s 
demand by 9774.787 kW and 5988.295 kW, respectively. In 
this case, the wind unit and photovoltaic unit will have a 
revenue of $244.369 and $149.707, respectively, from the 
source of sale of electricity to the grid. In this schedule, the 
micro-turbine unit must generate 22790.238 kW of power, 
which is the most contribution in meeting demand among 
these three types of generating units. The fuel consumption 
of micro-turbine in this scenario is about 2740.663 m3 that 
implies a reduction in comparison with the previous scenario. 
The overall operating cost of the micro-turbine is $413.087. 
The cost relevant to the emission is estimated to be $210.243 
(5148.481 kgCO2, 17.351 kgCO, 1.922 kgUHCs, 13.600 kgSO2, 
and 154.819 kgNOx). The energy not supplied cost and excess 
generation cost is risen compared with scenario 1 and 
reached to $0.673. The total operation cost of the system in 
this scenario is $1018.081, while the emission cost, energy 

not supplied cost, and excess generation cost are taken into 
account. Thus, the average operation cost is 0.0264 $/kWh. 

5.4. Scenario 3 
Nowadays, the development of energy storage 

technologies for emergency power provision has gained 
more importance. Besides, due to intermittency in power 
systems, the deployment of energy storage technologies for 
in the electrical grids is a vital element in restructuring for 
increasing the penetration of renewable sources and 
integration of distributed generation as well as improvement 
of power quality and alleviation of environmental issues. In 
this scenario, the impact of the integration of energy storage 
facilities in the operation model of the microgrid is 
investigated. Fig. 12 demonstrates the commitment and 
dispatch of power among generation sources in scenario 3.  

 
Fig. 12. The unit commitment and generation dispatch of 

units in scenario 3 

As can be seen from Fig. 12, the MCAES unit should 
store energy within 1 to 5 o’clock, as the demand of the 
microgrid is low. In contrast, this unit should deliver this 
power back to the grid (discharge) at 20 and 21 o’clock, 
while the electrical demand of the microgrid will reach a 
peak. In this case, the MCAES unit has received a profit of 
$2.364 from the source of sale of power to the microgrid. 
Likewise, the battery storage unit stores energy at 1 o’clock 
and discharge it at 21 o’clock. The battery unit earns a profit 
of $0.0973, meanwhile. The wind and photovoltaic systems 
receive similar profitability as scenario 2 for the same 
generation. The generation of the micro-turbine unit is 
decreased in comparison with the previous scenario, and it 
should generate 22411.989 kW. Consequently, the amount of 
fuel consumption and the generation cost of this unit are 
mitigated to 2695.176 m3 and $406.231. The generation of 
this amount of power by micro-turbine unit entails the 
emission of 4886.354 kgCO2, 16.466 kgCO, 1.823 kgUHCs, 
12.907 kgSO2, and 146.937 kgNOx. The emission of such 
amount of pollutants incurs the emission cost of $199.538. 
The summation of energy not supplied cost and excess 
generation cost is risen compared with scenario 2 and 
reached $0.758. Thus, the total operation cost of the system 
and the demand provision cots per kWh are $1003.065 and 
$0.026, respectively. Hence, it can be declared that the 
energy storage systems not only can supply the demand, but 
also can have positive impacts on the improvement of 
frequency, voltage, peak shaving management, and increase 
the penetration of renewable sources, mitigation of operation 
cost of grids, and consequently the reduction of total 
operation cost of electricity.  
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5.5. Scenario 4 
In general, the main goal of DRPs is to alleviate 

electricity consumption in critical and peak hours. The 
critical hours are defined as the time when the price of the 
wholesale market is spiked, or the reserve level of the grid is 
extremely decreased due to a contingency such as a fault on a 
transmission line, or a generator, or due to dreadful weather. 
In this scenario, a time-based rate DRP is incorporated. The 
aim of this program is to shift energy consumption from peak 
to off-peak hours. Fig. 13 shows the demand curve of the 
microgrid before and after the execution of the targeted DRP. 
The unit commitment and generation dispatch of distributed 
generation sources as well as storage units, according to 
scenario 4, is demonstrated in Fig. 14. 

 
Fig. 13. Demand curve of the microgrid before and after 

implementation of DRP 

 
Fig. 14. The unit commitment and generation dispatch of 

units in scenario 4 

The wind and solar units have the same profitability as 
scenarios 2 and 3 by selling power to the microgrid. In 
comparison with scenario 3, the micro-turbine unit should 
generate at a lower level by 22401.567 kW. Hence, the 
generation cost of micro-turbine and the fuel consumption of 
this unit has decreased to $406.042 and 2693.923 m3. As a 
consequence, the emission cost of the microgrid reached to 
$190.908 due to the emission of 4675.015 kgCO2, 15.756 
kgCO, 1.747 kgUHCs, 12.349 kgSO2, and 140.581 kgNOx. The 
battery storage is scheduled to charge at 1 o'clock while it 
should discharge at 24 o’clock. This measure procures a 
profit of $0.0972 for this unit. Besides, the MCAES unit 
stores power from hours 1 to 6 and 8 o’clock, and it should 
discharge from 19 to 21 o’clock. The profit of MCAES unit, 
similar to the third scenario, is about $0.722. The revenue of 
participant loads in DRP is estimated to be about $1.303. 
Therefore, the total operation cost and the mean operation 
cost per kWh in scenario 4 are $995.514 and $0.0258. As can 
easily be perceived, in the fourth scenario, the 
implementation of DRP underlies the tangible reduction of 
generation cost, the final electricity price, and emission of air 
pollutants. Therefore, it can be concluded that the integrated 

operation of generation sources along with storage facilities 
and DRPs can be led to the reduction of generation cost, 
alleviation of environmental pollutants, and improvement of 
reliability indices. The operation cost includes generation 
cost, emission cost, energy not supplied cost, and excess 
generation cost. In order to have better comprehension, the 
variation of operation cost in scenario 4 is depicted in Fig. 15 
for a 24-hour period. 

 
Fig. 15. The operation cost of the microgrid for a daily time 

horizon 

6. Conclusions 
In recent years, the concept of microgrid has been 

comprehensively investigated in combination with crucial 
topics such as optimized operation management and 
scheduling, distribution system planning, reliability, and 
controlling issues. The microgrid concept is a broad topic 
with a diverse set of challenging issues. There are intriguing 
ideas in the area of microgrid research. One of the most 
salient topics and challenges of microgrids is the procedure 
of management and scheduling of renewable resources and 
other generation sources of energy for a secure and reliable 
power supply. In this paper, this problem is introduced as an 
optimization problem with three different objectives, in 
which the generation cost of the microgrid, the emission of 
fossil-burning units, and the costs pertaining to energy not 
supplied and excess generation are integrated into the model. 
In order to reach an inspired performance, it is assumed that 
demand-side loads can participate actively and elastically in 
demand response programs. The main outcomes of this 
research can be summarized as follows: 

1. The proposed model not only has a simple structure 
but also has high capability in reaching optimal results. 

2. The incorporation of a multi-objective function in the 
optimization problem procures manoeuvring points and 
facilitates the implementation of different scenarios. Thus, in 
order to boost a certain objective, the most appropriate 
scenario can be maintained for the arrangement of generation 
dispatch scheduling. 

3. In the conducted modelling of the fourth scenario, the 
results imply that the integrated operation of all generation 
sources, as well as storage facilities along with the 
implementation of demand response programs, has been 
resulted in substantial mitigation of generation cost and final 
electricity price, and remarkable reduction of emission of air 
pollutants. 
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