Facile Synthesis of Copper Iodide at Low Temperature as Hole Transporting Layer for Perovskite Solar Cell

Omsri Vinasha Aliyaselvam, Faiz Arith, Ing Jia Rong, Shahril Izuan Zin, Fara Ashikin Ali, Ahmad Nizamuddin Mustafa

Abstract


A highly conductive Copper Iodide, (CuI) as solid-state hole transporting layer (HTL) with homogenous particles are produced by a two-step spin-coating method at room temperature with controlled conditions along with an optimized thermal annealing process at low-temperature condition. Conventional CuI films demand high annealing temperature for the fabrication process resulting in unsuitable for flexible applications. Primarily, thermal annealing has a major impact on the structural and electrical properties of the CuI thin films. Thus, to study the influence of thermal annealing, the fabricated CuI films were characterized for their surface morphology and crystallinity by utilizing Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD) and Raman Spectroscopy, respectively. Moreover, electrical characterization revealed the conductivity of the fabricated CuI films. The thermal annealing temperature of CuI HTL was optimized to 100 °C, yielding an immaculate morphological structure and a high electrical conductivity of 57.75 S/m.

Keywords


CuI; Hole Transporting Layer; Perovskite Solar Cell; Spin-Coating

Full Text:

PDF

References


S. Sharma, K. K. Jain, and A. Sharma, “Solar Cells: In Research and Applications—A Review,” Materials Sciences and Applications, vol. 06, no. 12, pp. 1145–1155, 2015.

K. Ranabhat, L. Patrikeev, A. A. evna Revina, K. Andrianov, V. Lapshinsky, and E. Sofronova, “An introduction to solar cell technology,” Journal of Applied Engineering Science, vol. 14, no. 4, pp. 481–491, 2016.

M. A. Green, “Third generation photovoltaics: Solar cells for 2020 and beyond,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 14, no. 1–2, pp. 65–70, 2002.

H. S. Jung and N. G. Park, “Perovskite solar cells: From materials to devices,” Small, vol. 11, no. 1, pp. 10–25, 2015.

A. Fakharuddin, L. Schmidt-Mende, G. Garcia-Belmonte, R. Jose, and I. Mora-Sero, “Interfaces in Perovskite Solar Cells,” Advanced Energy Materials, vol. 7, no. 22, 2017.

M. Grätzel, “Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, no. 2, pp. 145–153, 2003.

M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, “Solar cell efficiency tables (version 57),” Progress in photovoltaics: research and applications, vol. 29, no. 1, pp. 3–15, 2021.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050–6051, 2009.

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nature Photonics, vol. 8, no. 7, pp. 506–514, 2014.

N. H. Tiep, Z. Ku, and H. J. Fan, “Recent Advances in Improving the Stability of Perovskite Solar Cells,” Advanced Energy Materials, vol. 6, no. 3, pp. 1–19, 2016.

S. Pitchaiya, M. Natarajan, A. Santhanam, V. Asokan, A. Yuvapragasam, Venkatraman M. Ramakrishnan, S. E Palanisamy, S. Sundaram, D. Velauthapillai, “A Review on the Classifications of Organic / Inorganic / Carbonaceous Hole Transporting Materials for Perovskite Solar Cell Application,” Arabian Journal of Chemistry, 2018.

N. S. N. M. Alias, F. Arith, A. N. M. Mustafa, M. M. Ismail, S. A. M. Chachuli, and A. S. M. Shah, "Compatibility of Al-doped ZnO electron transport layer with various HTLs and absorbers in perovskite solar cells," Applied. Optics, vol. 61, pp. 4535-4542, 2022.

K. Zhao, G. O. N. Ndjawa, L. K. Jagadamma, A. El Labban, H. Hu, Q. Wang, R. Li, M. Abdelsamie, Pierre M. Beaujuge, A. Amassian, “Highly efficient organic solar cells based on a robust room-temperature solution-processed copper iodide hole transporter,” Nano Energy, vol. 16, pp. 458–469, 2015.

Y. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo, N. Pellet, F. Giordano, S. M. Zakeeruddin, J. E. Moser, M. Freitag, A. Hagfeldt, and Michael Gratzel, “11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials,” Nature Communications, vol. 8, pp. 1–8, 2017.

G. A. Sepalage, S. Meyer, A. Pascoe, A. D. Scully, F. Huang, U.Bach , Y. B. Cheng, and L. Spiccia “Copper(I) Iodide as Hole-Conductor in Planar Perovskite Solar Cells: Probing the Origin of J-V Hysteresis,” Advanced Functional Materials, vol. 25, no. 35, pp. 5650–5661, 2015.

W. Y. Chen, L. Deng, S. Dai, X. Wang, C. Tian, X. Zhan, S. Xie, R. Huang and L. Zheng “Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells,” Journal of Materials Chemistry A, vol. 3, no. 38, pp. 19353–19359, 2015.

J. E. Jaffe, T. C. Kaspar, T. C. Droubay, T. Varga, M. E. Bowden, and G. J. Exarhos, “Electronic and defect structures of CuSCN,” Journal of Physical Chemistry C, vol. 114, no. 19, pp. 9111–9117, 2010.

O. V Aliyaselvam, F. Arith, A. N. Mustafa, M. K. Nor, and O. Ahmed, “Solution Processed of Solid State HTL of CuSCN Layer at Low Annealing Temperature for Emerging Solar Cell,” International Journal of Renewable Energy Research, vol. 11, no. 2, 2021.

J. H. Lee, B. H. Lee, J. Kang, M. Diware, K. Jeon, C. Jeong, S. Y. Lee, and K. H. Kim “Characteristics and electronic band alignment of a transparent P-CuI/N-SiZnSnO heterojunction diode with a high rectification ratio,” Nanomaterials, vol. 11, no. 5, 2021.

A. S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, and S. K. Sarkar, “Inorganic hole conducting layers for perovskite-based solar cells,” Journal of Physical Chemistry Letters, vol. 5, no. 10, pp. 1748–1753, 2014.

J. Wang, J. Li, and S. S. Li, “Native p-type transparent conductive CuI via intrinsic defects,” Journal of Applied Physics, vol. 110, no. 5, 2011.

J. Zhu, M. Gu, and R. Pandey, “Structural and electronic properties of CuI doped with Zn, Ga and Al,” Journal of Physics and Chemistry of Solids, vol. 74, no. 8, pp. 1122–1126, 2013.

K. M. S. Benbouza, D. Hocine, Y. Zid, A. Benbouza, “New nanotechnology structures CNTFET GaAs”, 8th International Conference on Renewable Energy Research and Applications (ICRERA), Romania, pp. 799–803, November 2019.

G. R. A. Kumara, S. Kaneko, M. Okuya, and K. Tennakone, “Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor,” Langmuir, vol. 18, no. 26, pp. 10493–10495, 2002.

K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, V. P. S. Perera, G. M. L. P. Aponsu, and K. G. U. Wijayantha, “Deposition of thin conducting films of CuI on glass,” Solar Energy Materials and Solar Cells, vol. 55, no. 3, pp. 283–289, 1998.

V. P. S. Perera and K. Tennakone, “Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector,” Solar Energy Materials and Solar Cells, vol. 79, no. 2, pp. 249–255, 2003.

N. S. Noorasid, F. Arith, A. N. Mustafa, M. A. Azam, S. Mahalingam, P. Chelvanathan and N. Amin, “Current Advancement of Flexible Dye Sensitized Solar Cell: A Review,” Optik, vol. 254, 168089, 2022.

C A N Fernando and I Kumarawadu, “Colloidal p-CuI-sensitized double-dye system,” Semiconductor Science Technology,15 vol. 214, pp. 2–7, 2000.

S. Koyasu, N. Umezawa, A. Yamaguchi, and M. Miyauchi, “Optical properties of single crystalline copper iodide with native defects: Experimental and density functional theoretical investigation,” Journal of Applied Physics, vol. 125, no. 11, 2019.

C. Yang, M. Kneib, M. Lorenz, and M. Grundmann, “Room-Temperature synthesized copper iodide thin film as degenerate p-Type transparent conductor with a boosted figure of merit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 46, pp. 12929–12933, 2016.

D. Ahn, J. D. Song, S. S. Kang, J. Y. Lim, S. H. Yang, S. Ko, S. H. Park, S. J. Park, D. S. Kim, H. J. Chang & J. Chang, “Intrinsically p-type cuprous iodide semiconductor for hybrid light-emitting diodes,” Scientific Reports, vol. 10, no. 1, pp. 1–8, 2020.

Y. Peng, N. Yaacobi-Gross, A. K. Perumal, H. A. Faber, G. Vourlias, P. A. Patsalas, D. D. C. Bradley, Z. He, and T. D. Anthopoulos “Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers,” Applied Physics Letters, vol. 106, no. 24, pp. 1–4, 2015.

M. N. Amalina and M. Rusop, “Investigation on the I2:CuI thin films and its stability over time,” Microelectronic Engineering, vol. 108, pp. 106–111, 2013.

A. Nizamuddin, F. Arith, I.J. Rong, M. Zaimi, A.S. Rahimi, S. Saat, Investigation of Copper(I)Thiocyanate (CuSCN) as a Hole Transporting Layer for Perovskite Solar Cells Application, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 78, pp. 153–159, 2021.

C. Moditswe, C. M. Muiva, P. Luhanga, and A. Juma, “Effect of annealing temperature on structural and optoelectronic properties of ?-CuI thin films prepared by the thermal evaporation method,” Ceramics International, vol. 43, no. 6, pp. 5121–5126, 2017.

M. Zi, J. Li, Z. Zhang, X. Wang, J. Han, X. Yang, Z. Qiu, H. Gong, Z. Ji, and B. Cao “Effect of deposition temperature on transparent conductive properties of ?-CuI film prepared by vacuum thermal evaporation,” Physica Status Solidi (A) Applications and Materials Science, vol. 212, no. 7, pp. 1466–1470, 2015.

Á. Balog, G. F. Samu, P. V. Kamat, and C. Janáky, “Optoelectronic Properties of CuI Photoelectrodes,” Journal of Physical Chemistry Letters, vol. 10, no. 2, pp. 259–264, 2019.

M. Cota-Leal, D. Cabrera-German, M. Sotelo-Lerma, M. Martínez-Gil, and J. A. García-Valenzuela, “Highly-transparent and conductive CuI films obtained by a redirected low-cost and electroless two-step route: Chemical solution deposition of CuS2 and subsequent iodination,” Materials Science in Semiconductor Processing, vol. 95, no. 1, pp. 59–67, 2019.

A. R. Kumarasinghe, W. R. Flavell, A. G. Thomas, A. K. Mallick, D. Tsoutsou, C. Chatwin, S. Rayner, P. Kirkham, S. Warren, S. Patel, P. Christian, P. O’Brien, M. Grätzel, and R. Hengerer “Electronic properties of the interface between p-CuI and anatase-phase n-TiO2 single crystal and nanoparticulate surfaces: A photoemission study,” Journal of Chemical Physics, vol. 127, no. 11, 2007.

X. Li, J. Yang, Q. Jiang, W. Chu, D. Zhang, Z. Zhou, and J. Xin, “Synergistic Effect to High-Performance Perovskite Solar Cells with Reduced Hysteresis and Improved Stability by the Introduction of Na-Treated TiO2 and Spraying-Deposited CuI as Transport Layers,” ACS Applied Materials and Interfaces, vol. 9, no. 47, pp. 41354–41362, 2017.

W. Sun, S.Ye, H. Rao, Y. Li, Z. Liu, L. Xiao, Z. Chen, Z. Bian and C. Huang “Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells,” Nanoscale, vol. 8, no. 35, pp. 15954–15960, 2016.

S. Z. Haider, H. Anwar, Y. Jamil, and M. Shahid, “A comparative study of interface engineering with different hole transport materials for high-performance perovskite solar cells,” Journal of Physics and Chemistry of Solids, vol. 136, no. 7, p. 109147, 2020.

L. Zhang, X. Liu, J. Li, and S. McKechnie, “Interactions between molecules and perovskites in halide perovskite solar cells,” Solar Energy Materials and Solar Cells, vol. 175, no. 8, pp. 1–19, 2018.

N.S. Noorasid, F. Arith, A.N. Mustafa, M.A. Azam, S.H. Meriam Suhaimy, O.A. Al-ani, “Effect of Low Temperature Annealing on Anatase TiO2 Layer as Photoanode for Dye-Sensitized Solar Cell,” Przegl?d Elektrotechniczny, vol. 97, no. 10, pp. 12–16, 2021.

T. Prakash, “Influence of temperature on physical properties of copper (I) iodide,” Advanced Materials Letters, vol. 2, no. 2, pp. 131–135, 2011.

D. K. Kaushik, M. Selvaraj, S. Ramu, and A. Subrahmanyam, “Thermal evaporated Copper Iodide (CuI) thin films: A note on the disorder evaluated through the temperature dependent electrical properties,” Solar Energy Materials and Solar Cells, vol. 165, no. 10, pp. 52–58, 2017.

R. Mulla and M. K. Rabinal, “Defect-Controlled Copper Iodide: A Promising and Ecofriendly Thermoelectric Material,” Energy Technology, vol. 6, no. 6, pp. 1178–1185, 2018.

M. M. Salah, K. M. Hassan, M. Abouelatta, and A. Shaker, “A comparative study of different ETMs in perovskite solar cell with inorganic copper iodide as HTM,” Optik, vol. 178, no. 10, pp. 958–963, 2019.

F. Arith, S.A.M. Anis, M.M. Said, C.M.I. Idris, "Low cost electro-deposition of cuprous oxide P-N homo-junction solar cell," Advanced Materials Research, 827 pp 38–43, 2014.

M. Huangfu, Y. Shen, G. Zhu, K. Xu, M. Cao, F. Gu, and L. Wang “Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer,” Applied Surface Science, vol. 357, pp. 2234–2240, 2015.

I. Massiot “Design and Fabrication of Nanostructures for Light-Trapping in Ultra-Thin Solar Cells,” Ph.D. Thesis, Université Paris Sud-Paris XI, Paris, France, 2013.

P. P. Murmu, V. Karthik, S. V. Chong, S. Rubanov, Z. Liu, T. Mori, J. Yi, and J. Kennedy “Effect of native defects on thermoelectric properties of copper iodide films,” Emergent Materials, vol. 4, no. 3, pp. 761–768, 2021.

N. S. Noorasid, F. Arith, A. Y. Firhat, A. N. Mustafa and A. S. Mohd Shah, SCAPS Numerical Analysis of Solid-State Dye-Sensitized Solar Cell Utilizing Copper (I) Iodide as Hole Transport Layer, Engineering Journal, vol. 26, no. 2, pp. 1-10, 2022.

O. V. Aliyaselvam, S. A. Mat Junos, F. Arith, N. Izlan, M. Mohd Said, A N. Mustafa, "Optimization of Copper(I) Thiocyanate as Hole Transport Material for Solar Cell by Scaps-1D Numerical Analysis", Przegl?d Elektrotechniczny, vol. 98, no. 6, 2022.

A. Konno, T. Kitagawa, H. Kida, G. R. A. Kumara, and K. Tennakone, “The effect of particle size and conductivity of CuI layer on the performance of solid-state dye-sensitized photovoltaic cells,” Current Applied Physics, vol. 5, no. 2, pp. 149–151, 200




DOI (PDF): https://doi.org/10.20508/ijrer.v12i2.12825.g8473

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE between 2020-2022; 

h=30,

Average citation per item=5.73

Impact Factor=(1638+1731+1808)/(189+170+221)=9.24

Category Quartile:Q4